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Wetting transitions in fluids with short-ranged forces:
correlation functions and criticality

R Evans and A O Parry
H H Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK

Received 12 May 1989

Abstract. The nature of the pairwise correlation function G for a fluid undergoing critical
and complete wetting transitions at an adsorbing substrate (wall) is examined using various
statistical-mechanical treatments. Sum-rule and scaling arguments predict that, in critical
wetting at bulk coexistence, capillary-wave fluctuations manifest themselves throughout the
wetting film, up to the wall, so that the (divergent) transverse correlation length & is the
same for all pairs of particles. By contrast, in the case of complete wetting from off-bulk
coexistence, a divergent correlation length is appropriate only for particles located in the
liquid-gas edge of the wetting film. These predictions are confirmed by explicit formulae for
the transverse moments of G derived from a mean-field, density-functional theory of a
Yukawa fluid in the presence of a short-ranged (exponential) wall-fluid potential. The sum-
rule analysis also provides a surface analogue of the Cp—Cy thermodynamic relation, which
is used to determine a rigorous relationship between the exponents that characterise critical
wetting. The same thermodynamic relation predicts corrections to scaling in bulk dimension
d =3 that are similar to those found in renormalisation-group (RG) studies of effective
interfacial Hamiltonians.

By unfreezing capillary-wave fluctuations on a mean-field density profile and making use
of a sum rule that relates a derivative of the surface tension to the profile near the wall,
relationships between &y and the thickness ¢ of the wetting film are derived for critical wetting
with finite-ranged forces. For d < 3 this analysis predicts the correlation-length exponent
vy = 2/(3d ~ 5). For 4 = 3 critical exponents depend on the dimensionless parameter @ =
kg T/4:wlg &%, where o, is the liquid-gas surface tension, &, is a bulk correlation length and
t=(2+ w - 1/v)& In(§/&,) provided w < 2. Our procedure accounts for the other fluc-
tuation regimes found in the RG studies and provides new insight into the origin of the w-
dependence of the exponents. The singularities that occur in critical wetting can be described
in terms of a simple ansatz for G, similar but not identical to that proposed by Henderson.

1. Introduction

The subject of wetting transitions has attracted enormous theoretical and experimental
effort since Cahn (1977) and Ebner and Saam (1977) first described a phase transition
from partial to complete wetting by a fluid phase of the interface between an inert
substrate, or spectator phase, and a second fluid phase that coexists with the first. Cahn
(1977) and Ebner and Saam (1977) predicted that the transition would be first-order;
fortemperature T << 7, the thickness ¢ of the film of the intruding phase is finite, whereas
for T = T, thisis of macroscopic extent so that tdiverges discontinuously at the transition

0953-8984/89/397207 + 32 $02.50 © 1989 IOP Publishing Ltd 7207



7208 R Evans and A O Parry

Phase A
(liguid) Figure 1. The two types of wetting transition.

Critical wetting occurs on path (1) as the wetting
transition temperature T, is approached from
below at bulk coexistence u = g, (7) (full curve).
Complete wetting from off-bulk coexistence
. occurs on path (2) as y — e, (T) for T> T,,. The
He bulk coexistence curve ends in a critical point

(#e To).

temperature 7,,. Later Sullivan (1979, 1981) showed, on the basis of a van der Waals
{(density-functional) treatment, that the transition could be continuous. Such a transition
is now termed ‘critical wetting’. In the complete wetting regime (7 = T,,) the thickness
of the wetting film diverges continuously as the chemical potential 4 approaches its value
at bulk coexistence ug, (7).

Critical behaviour accompanies film growth on both types of path (see figure 1), For
critical wetting the relevant control field is T,, — T, at u = p,, whereas for complete
wetting the relevant field is pu,(7T) — u, at T= T,. By varying the strength ¢ of a
substrate—fluid potential, so as to favour the adsorption of the intruding phase, critical
wetting can be induced at fixed temperature. The relevant field is then £,(T) — €, where
£4(T) is the strength of the potential at the transition. Excellent reviews of work on both
types of wetting transition are given by Sullivan and Telo da Gama (1986), Dietrich
(1988) and Shick (1989).

Although the basic physics is well established from mean-field treatments of lattice-
gas models and density-functional calculations for continuum fluids, there has been
relatively little work on understanding wetting phenomena from a more fundamental
statistical-mechanical basis. Apart from a few valuable exact results for two-dimensional
Ising-like or solid-on-solid models (e.g. Abraham 1986), almost all efforts at including
the effects of critical fluctuations are based on the framework of effective interfacial
Hamiltonians, of the type first used to investigate capillary-wave-like fluctuations at the
free interface between two coexisting fluid phases. Detailed studies of such Ham-
iltonians—see the reviews above—have provided some insight into the nature of inter-
facial fluctuations and have demonstrated that wetting is an extremely rich critical
phenomenon. Some of the predictions are very striking. The upper critical dimension
d.depends on the form of the substrate—fluid and fluid—fluid potentials. For algebraically
decaying potentials, d, < 3, and critical exponents for a real fluid should be described
correctly by mean-field theories and should depend explicitly on the inter-molecular
forces. For finite-ranged or exponential potential functions, d, = 3 for complete and
critical wetting. Fluctuation effects remain important in d = 3, especially for critical
wetting, where intriguing, non-universal exponents are predicted.

In this paper we ask the following questions: (i) To what extent can the predictions
from the interfacial Hamiltonians and other approaches be obtained from the formal
statistical mechanics of inhomogeneous fluids, appropriate to a realistic many-body
Hamiltonian for a continuum fluid in an external (substrate) potential? (ii) What is the
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nature of the pairwise correlation function G(r, r;) in a fluid approaching a wetting
transition? These questions are not unrelated. Both complete and critical wetting are
characterised by the growth of capillary-wave-like fluctuations in the depinning fluid-
fluid interface, and these fluctuations manifest themselves in Ornstein-Zernike behav-
iour of G(ry, ry), provided both particles are located near ¢, i.e. in the edge of the wetting
film. The associated transverse ( parallel to the substrate) correlation length & diverges
in the approach to the transition. Relationships between the critical exponents that
describe the divergence of #(), §(v) and the singular part of the surface excess free
energy (o) are best understood, at the microscopic level, in terms of the singular
behaviour of transverse moments of G(r,, r,). Effective Hamiltonian approaches do not
provide a description of the density profile of the fluid or of the pairwise correlation
function; the order parameter is simply the fluctuating film thickness.

Our paper is arranged as follows: In § 2 we use statistical-mechanical sum rules and
surface thermodynamics to derive critical exponent relationships. These are consistent
with earlier results based on scaling ideas and with exact results in d = 2. With some
mild assumptions the sum rules also allow us to make predictions for singularities in
G(ry, ry). Critical and complete wetting are signalled by very different behaviour of the
zeroth transverse moment Gy(t, 0), corresponding to one particle in the edge of the
wetting film, z, ~ ¢, and one particle at the wall, z, = 0. G(¢, 0) remains finite as t—
for complete wetting, whereas this quantity diverges with a universal exponent for
critical wetting. The local susceptibility at the wall and the second moment G,(0, 0) for
both particles at the wall also remain finite at complete wetting but are divergent in
critical wetting. In § 3 we investigate correlation functions in a mean-field density-
functional theory of the inhomogeneous fluid. For particular choices of the attractive
fluid-fluid (Yukawa) and substrate—fluid (exponential) potentials, explicit formulae for
the transverse moments of G(ry, r,) can be obtained. These enable us to examine in
detail the nature of correlations at the different types of wetting transition and to test
the general predictions arising from the formal sum-rule analysis. The results confirm,
within mean-field theory, the predictions of § 2. Section 4 contains a derivation of certain
relationships between correlation length &) and film thickness ¢ for the important special
case of critical wetting with short-ranged potentials in d = 3. Using thermodynamic
arguments and the idea that there is only one diverging correlation length in the inhomo-
geneous fluid, we obtain relationships that are very similar to those obtained in explicit
renormalisation-group calculations for interfacial Hamiltonians. In § 5 we derive the
same relationships by unfreezing capillary-wave fluctuations on a bare (mean-field)
density profile. This procedure also generates explicit results for exponents for critical
wetting in d < 3. We conclude in § 6 with a summary of our results and some remarks
about other aspects of wetting transitions.

To the best of our knowledge the only other work on wetting that adopts a similar
(correlation-function) viewpointisthat of Henderson (1986, 1987a,b). While our present
treatment of the sum rules owes much to his seminal papers, it differs in some important
technical details and presents new results for the correlation functions at wetting tran-
sitions. We deliberately avoid making Henderson’s single-eigenfunction assumption at
the outset, since we found that this is problematic for the case of complete drying at a
hard wall (Parry and Evans 1988). That paper, hereafter referred to as I, contains a
detailed analysis of correlation functions for the Sullivan (1979, 1981) density-functional
model. Many of the results derived in I will be used here, but we have attempted to make
the present paper self-contained.
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2. Statistical-mechanical sum rules, relationships between critical exponents and form of
correlation functions

In this section we recall the most important sum rules for the properties of inhomo-
geneous fluidsin an external potential V(r). These sumrules are then applied to complete
and critical wetting transitions in order to derive relationships between the various
critical exponents that characterise such transitions for fluids near walls. While our
presentation of the sum relies on the work of Henderson and van Swol (1985) and
Henderson (1986), our derivations of the exponent relationships and of the form of the
correlation functions in the vicinity of transitions avoid making any specific ansatz for
G(r, r,).

2.1. Sum rules

The hierarchy of distribution functions is generated by successive functional dif-
ferentiation of the grand potential Q withrespect to u(r) = u — V(r) atfixed temperature
T:

5Q/8u(r) = —p(r) (1a)
and
B1op(r1)/ou(r;) = G(ry, ry) = p(ri)p(ry)h(ry, ry) — 8(ry — ry)p(ry) (10)

where p(r) is the equilibrium one-body density and G(r,, r,), the density—density cor-
relation function, is related to the total pairwise distribution function A(r,, r,). Also, u
is the chemical potential and 7! = kg 7. For a fluid in an external potential V(r) = V(z),
the density of the fluid depends upon z only, p(r) = p(z), and, at fixed u, (15) leads to

P =B 45V EGE ) @)

where the prime denotes differentiation with respect to z. The (dimensionless) local
susceptibility, for fixed external potential, also follows from (15):

_ 1 ap(z)y 1 * .
ﬂzl)_ﬂp(m)( Yy >T~p(zl)f-mdzzGo(anz)~ (3)

G, is defined via the transverse Fourier transform:
G(z1,25; Q) Ede exp(iQ * R)G(z,, z5; R)

=G0(Zlyzz)+Qsz(Zl,Zz)+.... (4)

Here R and Q are transverse vectors, parallel to the interface. (In three dimensions R? =
(x; — x,)* + (y1 — ¥,)%.) Equation (4) assumes the existence of an expansion in powers
of Q% and implies Ornstein—Zernike-like behaviour. We return to this point later.
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Two quantities of central importance for wetting phenomena are the surface excess
grand potential Q® and the adsorption, or coverage, I'. The former is defined by
QO =Q + pV,

where p is the pressure of the bulk fluid, far from any interface, at given (4, T), and V;
is the volume occupied by the fluid. I' is given by the Gibbs adsorption equation

IQE/A
r- (224 (50
ou T
and is the excess number of particles per unit area A:
r=| dzlo@ -l (56)
0

We have assumed that V(z) is infinitely repulsive for z < 0 so that p(z) = Oforz < 0. In
(5b), pp(u, T) is the density of the bulk fluid. Differentiation of (5b) with respect to u
and use of (3) give a surface susceptibility sum ruic

(5a), =8] a2 10n@ - o (60)

=8[ 4z [ 420G 2) - Gollz - 20),6002)) (6b)
0 —x

where subscript b refers to a property of the bulk fluid. Equation (6) is the analogue of
the well known sum rule that relates the bulk compressibility to the long-wavelength
limit of the liquid structure factor.

The second transverse moment of G is related to the surface tension o of the fluid in
the external potential:

o==p| dz| 4z VEIVE)GHE ) )
In general o is not equal to Q®/A; there is an additional one-body contribution:
Q/A =0 f dz zp(2)V'(2). ®)
0
For the special case of a planar hard wall, with
Vo () {00 z<0
wiZ) =
" 0 2>0
many of the sum rules simplify (Henderson and van Swol 1984):
Bp=pw=p07) (9a)
Go(2,0)=p'(2) z>0 (9b)
x(0%) = py/pw (%)
QO/A=0=—B71G,(0",0"). (94d)

The implications of (9) for complete drying were discussed at length in I and we shall
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recall some of these later when discussing effects beyond mean-field theory. Here we
merely note that these results are exact and apply in any dimension d. For d = 2, where
liquid—gas coexistence occurs in bulk, (9a) indicates that in the limit u — p g, the density
at contact p,, is slightly less than the density of the coexisting gas. This is consistent with
the premise that the interface between a hard wall and a liquid should be wet completely
by gas (complete drying) for any temperature for which bulk coexistence occurs.

Sum rules can also be derived by varying the strength of the attractive part of the
external potential V, at fixed (u, T). These are especially revealing for the case of criti-
cal wetting transitions (Henderson 1986). We suppose that V(z) is defined such that
0V(z)/ae = V,(z)/eis independent of the well depth &. Then from (5b), (15) and (4) we
obtain

= = - 4
<6€>u,r fo dz o€ p . dz, . 27 Go(z1,2;)  (10)
while from (1a), and the definition of Q®, we have

32QW/A _ 9" Ve(2)
<—_682 ),1,7_5,[0 dzp(z)—T-. (11a)

Since V,(z)/e is independent of ¢, (11a) can be rewritten as

92Q®/A = Ve(zy) (= V.(z,)
<_——agz/ > = —ﬁf dz, === f dz, == Go(z1,22).  (11b)
#s 0 —oc

It is convenient to treat € as a thermodynamic field. Then surface thermodynamics
are obtained from

d(Q®/A) = —sdT-Tdu - ©de (12)

where s is the surface excess entropy per unit area.
The conjugate density for ¢ is

_ [9QU/A [ V(@)
@——< Py )A"T— fodzp(z) . (13)

From (12) it follows that, for fixed T,

(5e), = (Gl - ()G,

which becomes, in terms of more convenient variables,

90 00 ar\?/ar\™!
(5e), = o).+ (oL Ga). a9
dE/ de/r o0&/ \ou/
Equation (14) is a surface analogue of the standard Cp~Cy thermodynamic relation; it
will prove to be important in determining relationships betwen critical exponents. Note

that, for a magnetic (Ising) system, 4 — k, the bulk external field, I — m;, the surface
excess magnetisation, and € — h;, the applied surface field. If the latter acts on the
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surface layer (n = 1) only, then ® — m,, the magnetisation in that layer, and (14)
transcribes to

2 -1
G~ G, GG, a5
which is somewhat easier to contemplate since m,; is strictly local now. The LHS of (15)
is simply the susceptibility
X1 =—(8°F® [3h1)u 1
where F®is the (magnetic) surface excess free energy. We could, of course, have chosen

to differentiate with respect to temperature 7. This would have yielded equivalent
equations but these are less useful for subsequent purposes.

2.2. Relationships between critical exponents

Complete or critical wetting transitions are signalled by the growth of thick wetting films
and the development of capillary-wave-like fluctuations in the depinning liquid—gas
interface. Such fluctuations give rise to Ornstein—Zernike behaviour of the density—
density correlation function in the edge of the film, i.e.

G(z1,22; Q) ~ Golz1, 2,)(1 + Ef Q) ! Z1,2;~t (16)
for small wavenumbers Q. The transverse correlation length & = [— Gy(t, 1)/G(t, H)]/2
and the zeroth moment

Go(zl,zz)"'P'(Zl)P'(Zz)Eﬁ/ﬁUlg Z1,2;~1 (17)

diverge as the film thickness ¢ diverges at the appropriate transition (e.g. Tarazona and
Evans 1982, Lipowsky 1985). Because the relevant fluctuations are capillary-wave-like,
the analogue of the exponent 7 is zero for all wetting transitions (Lipowsky 1984, 1985,
Dietrich 1988 and references therein) and the expansion (4) should be valid.

2.2.1. Complete wetting from off-bulk coexistence. In the complete wetting regime the
transition occurs as 4 — U, atfixed T > T,,. The thickness of the liquid film and, hence,
the adsorption diverge as

T ~ Apt ~ |8u| s (18a)

where du = ug,, — pand Ap = p, — p, is the difference in densities of the two coexisting
bulk phases. The correlation length diverges as

g~ ou ™! (186)
while the singular part of the surface excess grand potential vanishes as
Qe/A ~ [ou*™ . (18¢)

The exponents f;, vj and a; are not independent. From the Gibbs adsorption equation
(5a) it follows that

1-~a,=-p, (19a)
while from (6) and (17) it follows that
1+8,= 2V”. (19b)

These relationships are valid for all types of wall-fluid and fluid—fluid potentials. For
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short-ranged (exponential or finite-ranged) potentials the mean-field result is
t~ ~In|dul,sothat f; = 0,y = $and a, = 1. Inserting these valuesinto the hyperscaling
relation

2—a,=(d- 1)y (19¢)

it follows that the upper critical dimension d, = 3 (e.g. Dietrich 1988). (Hyperscaling
for the surface problem asserts & "' Q). /A ~ kz T.) Thus, for d < 3, the exponents are
determined uniquely by (19), e.g.

v = 2/(d +1).

Ind =2, 8, =3, vy = $and &, = 3. These results agree with those from exact solution
of asolid-on-solid modelin an external field (e.g. Abraham 1986 and references therein).

The sum rules enable us to make some statements about the nature of correlation
functions at complete wetting. Equations (17) and (3) imply that the local susceptibility
in the edge of the film diverges as

x(2) ~ p'(2)Ef z~t (20)

for all potential functions. For the special case of a hard wall, (9) makes rather specific
predictions for correlation functions in complete drying, u— uf,. Equation (9b) states
that Gy(z, 0) is equal to the density gradient p’(z). Consider the situation where one
particle is at the wall and the other is in the edge of the intruding gas film. Then p'(¢)
becomes equal to the density gradient of a free liquid-gas interface as t — . Capillary-
wave arguments then predict p'(¢) ~ E7' as du— 0%, where &, is the width of the
depinning interface, or the interfacial roughness:

constant a>3
E, ~{(Ing)"? d=3 (21)
‘g‘f‘d)/z d < 3.

Using the exponents quoted above we predict for complete drying with short-ranged
potentials

constant d>3
Go(t,0) ~{ t717 d=3 (22)
gl~1tt d<3

in the limit — o,

Sum rule (9¢) shows that the local susceptibility at contact, x(0*), depends on the
density of the bulk liquid, which is macroscopically far from the wall when the gas film
intrudes in the limit u — 0*. Equation (9d) asserts that the second transverse moment
G,(0, 0) evaluated with both particles at the wall is proportional to the fotal surface
tension oy, of the wall-liquid interface. In the limit du — 07, g, = 0, + 0, Where O,
is the wall-gas gas tension. Thus G,(0, 0) depends on the tension, oy, of the liquid-gas
interface that is a macroscopic distance from the wall. (A detailed analysis of this curious
result was given in I.) In contrast the zeroth moment Gy(0, 0) depends only on the
derivative of the density at the wall, which is characteristic of the wall-gas interface in
the complete drying limit.

It is natural to enquire if these features of the correlation functions are specific to
drying at a hard wall or whether they pertain, with minor alterations, to all complete
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wetting or drying situations in systems with short-ranged potentials. Our explicit mean-
field results for exponential potentials will shed light on this question

2.2.2. Critical wetting at bulk coexistence. We suppose that a critical wetting transition
can be induced at a fixed value of (u,T) on the bulk coexistence curve by increasing the
strength & of the attractive part of the wall-fluid potential. Then for e < e, (u, T)
the wall-gas interface (6u = 07) is partially wet by liquid o, < o, + 0y,, whereas for
€ = g,(u, T) this interface is completely wet and o,,, = 0y, + 0}, Alternatively we can
envisage a critical drying transition induced by decreasing ¢; for € > ep(u, T) the wall-
liquid interface (6u = 07) is partially wet (dried) by gas whereas for € < ep(u, T)
this interface is completely dry. Critical behaviour, analogous to (18), will occur as
e— ¢e.(u, T). We use the same notation for critical exponents but the values of these
exponents will be different from those for the approach to complete wetting from off-
bulk coexistence:

I' ~ Apt ~ |Se|Ps (23a)
EH ~ ‘58|"’H (23b)
Ql,/A ~ |el? e (23¢)

with 8¢ = ¢ — ¢,(u, T). The fundamental relationship between the critical exponents
now follows from the thermodynamic relation (14). The LHs is ~((3?Q®/A4)/d¢e?), 1
which has a ‘singular’ contribution |6¢|~*s, while the second term on the RHS is the
ratio of two diverging terms: from (6), (17) and (23b), (3T/ou), r ~ |6¢|72*I whereas
(8T/d€), r ~ |6e|" 17 for e — e,,. For finite-ranged potentials 3 = 0(In), v = 1 and
a, = 0, corresponding to a finite singular contribution to ((3?°Q®/A)/0e?), r (e.g. Sul-
livan and Telo de Gama 1986) in mean-field approximation. Beyond mean-field theory
it is feasible that o, # 0. Then, assuming (0©/d¢), (or further derivatives of Q©)/A) are
not less singular than (§®/d ) (or further derivatives of this quantity) it follows that

-y = '—2(1 + ﬁs) + ZVH
or
2 - &g = 2VH - 2/373. (24)

Clearly this is the analogue of the well known Rushbrooke exponent (in)equality for
bulk systems. When «, < 0 the non-singular contribution to (§®/d¢), and (6©/d¢)r
must be identical at 8¢ = 0. In the vicinity of the transition

Q(S)/A = O'wl(g) + olg + lesx)lg/A (25)

and the (non-critical) wall-liquid tension, which is analytic in e, gives a constant
contribution to ((3°Q®/A)/9€?), 1. Note that (24) is obeyed by the mean-field results.
Our present thermodynamic derivation of the exponent relation is more direct than
previous derivations that were based on a scaling hypothesis for Q) (e.g. Sullivan and
Telo da Gama 1986, Schick 1989) or on an ansatz for Go(z,, z,) (Henderson 1986).
Inserting the mean-field exponents into the hyperscaling relation (19¢) we obtain d, =
3 once more.
Combining (19¢) and (24) we find

Bo=(3-dv/2 d<3. (26)
But (21) shows that the interfacial roughness &, ~ £f*~9/2 for d < 3. Thus &, diverges
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with the same exponent as that of the film thickness ¢, at critical wetting in d < 3. This
was also the case for complete wetting in d < 3, reflecting the fact that for both types of
transition strong fluctuations of the interface lead to excursions that are of the same
order as the film thickness,i.e. £, ~ ¢

Unlike the complete wetting case we cannot determine the exponents uniquely from
sum-rule and hyperscaling arguments because there are two relevant scaling fields—the
chemical potential u and the wall field e—rather than the single field u appropriate in
complete wetting. However, since n = 0, all critical exponents can be expressed in terms
of a single independent exponent v, say (Schick 1989). The exact results for the square
Ising lattice with a contact surface field 4, (Abraham 1986), 8, =1, vyy=2 and o, =0
satisfy (24) and (26).

Critical wetting is rather special in d = 3. If there is power-law growth of the cor-
relation length (finite vy), (26) implies B = 0, i.e. logarithmic growth of the film thick-
ness. The magnitude of vy is not determined but we would expect incorporation of
fluctuations either to leave v unrenormalised or to increase v above the mean-field
value (3 is the marginal dimension.) Then from hyperscaling, or from (24), « is either
zero or negative. In the second case ((92Q®/A)/3€?), r has a vanishing singular con-
tribution at the transition—see (23¢) and (25). Renormalisation-group (RG) calculations
for effective interfacial Hamiltonians (e.g. Dietrich 1988) predict »| > 1 and, therefore,
a, < Ofor short-ranged potentialsin d = 3. We will comment on these predictionsin § 4.

As emphasised earlier, this treatment is based on the assumption that the exponent
ny = 0 for all wetting transitions. It is instructive to enquire how exponent relations for
critical wetting would be modified if 7 # 0. We suppose that (3T/du), r ~ |8g| 771, with
¥|» the analogue of the susceptibility exponent, related to the transverse correlation-
length exponent via yj = (2 — 7). Then the Cp~Cy relation implies, for finite 1, that

2= a;=vy(2 - 1) — 2P,
rather than (24). Assuming hyperscaling remains valid we find
V”(d -3+ nH) = —28,.

Since in d = 3 we require §; = 0 and »| = 1 (the mean-field result), the above relation
implies 7, =< 0. But 7, cannot be negative, so we conclude that thermodynamic con-
siderations plus hyperscaling enforce the condition 7, = 0, in keeping with the general
consensus concerning the nature of capillary-wave fluctuations (e.g. Dietrich 1988).
Moreover, f3, is forced to be zero. If the correlation length diverges exponentially, the
above argument is no longer applicable. Note that in d = 2 Abraham’s (1986) explicit
results for the Ising model require 7 = 0.

As first recognised by Henderson (1986) the sum rules make specific predictions for
the behaviour of correlation functions as de — 0. The susceptibility in the edge of the
film diverges as in (20), with the correlation-length exponent appropriate to critical
wetting. More strikingly the local susceptibility also diverges for z near the wall. This
becomes clear upon combining (10) and (3). If V,(z) has a finite (microscopic) range a,
then x(a) diverges as (3T'/d¢), 1.

Itis natural to suppose that such adivergence in y(a) is associated with the divergence
of Gy(a, 1), i.e. the integral in (3) is dominated by the contribution from z, ~ 1. A
plausible form is

Go(z,a) ~ p'(z)(0T/3€) . 1 z~"L (27)

This yields the correct divergence for x(a) and is consistent with the sum rule (10).
Explicit density-functional results (see § 3) confirm the factor of p’(z).
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Using the exponents introduced above, (27) implies
Go(t,a) ~ |6e|7? for all d (28)

as 8¢ — 07. This result assumes that 8, = 0ind = 3. If §, # 0, as is expected for certain
strong fluctuation regimes in d = 3, (28) will be modified. Critical wetting with short-
ranged potentials is characterised by G (¢, a) diverging with an (almost) universal critical
exponent. Such behaviour should be constrasted with (22) for complete wetting.

When both particles are close to the wall we must consider G(a, a). This quantity is
defined as G(a, a) minus the delta function, i.e. Gy(z, z) = pX(2)hy(z, z)—see (1b).
For critical wetting (11b) and (25) together imply that Gy(a, a) acquires a ‘singular’
contribution |6&| % from the ‘critical’ interface. Such a contribution is non-vanishing at
the transition in mean-field approximation (a; = 0)—see § 3.4.

If &, < 0 any singular contribution to G(a, @) must vanish for finite-ranged V,(z)
and we might expect G((a, a), with a ~ 0, to be the same for the ‘critical’ (u = ug,) and
‘non-critical’ (u = ug;,) interfaces at the transition.

The second transverse moment G,(z4, z,) is also of interest. When both particles are
in the edge of the film, (16) and (17) imply

Gy(z1,2;) ~ —p'(z1)p'(22) Eﬁ/ﬁalg 21,2y~ L

Asz;and z;move out of the liquid—gasinterface, G, willdecay. Anysingular contribution
can be estimated using the Ornstein—-Zernike (0z) relation, which defines a direct
correlation function C as the inverse of G:

[ dz5CG1 2506321 0) = 86z -~ 2 (29)
Expanding C and G in powers of 0%, as in (4), it follows (e.g. Evans 1979) that

Gi(z1,2y) = ‘j d23f dzy Go(zy, 24)C(24, 23)Go(z3, 22) (30)

where C)(z,, z,) is the second transverse moment of the direct correlation function.
Using (27) in (30) it is clear that G4(a, a) should acquire a divergent contribution from
zz and z, in the edge of the film:

Gy(a,a) ~ ~0y,(8T/d¢e)}, 1 ~ |0 +F) (1)

where the Triezenberg and Zwanzig (1972) formula (see also I) has been used to express
theintegralin terms of o),. We are now in a position to examine the transverse correlation
length

E\\N = [_GZ(a’ a)/(;%ing(a’ a)]l/z (32)

corresponding to correlations in which both particles are close to the wall. It isimportant
to recognise that this definition employs only the singular contribution (o |8g|~%) to
Go(a, a), which, as we have seen, may vanish at the transition. Inserting (31) into (32)
and making use of the exponent relation (24), we find §}' ~ &;. In other words the
transverse correlation length for particles near the wall diverges in the same manner as
that for particles located in the depinning liquid-gasinterface; there is only one diverging
correlation length. For complete drying at a hard wall we found that both G,(0, 0) and
G,(0, 0) are finite at u = u7,. There is no divergent &}" in this case—see L.
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3. Correlation functions from a mean-field free-energy functional

The sum-rule analysis of the previous section made some rather general predictions
concerning the behaviour of pairwise correlation functions for fluids undergoing wetting
transitions. In order to test and to understand better these formal results, it is instructive
to examine the correlation functions obtained for a specific model of a fluid near a wall.
Here we consider a simple, mean-field density-functional theory of the inhomogeneous
fluid in which explicit formulae can be calculated for transverse moments of G. As the
present discussion is an extension to critical wetting transitions of the density-functional
theory developed in I for complete wetting, we make much use of results presented in
that paper.

3.1. Specification of the free-energy functional and equations for G

Asin I we consider the grand potential functional

Qulp(r)] = = [ dr plryutr) + Tl (33)
with the intrinsic Helmholtz free energy given by

Flo] = J'd’fh(P(’)) + %J’drl fdrz p(ri)p(r)w,(lry = raf). (34)

Minimisation of Qy with respect to p(r) yields an integral equation for the equilibrium
density profile:

u(r) == V) = (o) + | & p(ywa(lr = . (9)

The approximation (34) for #[p] has been widely used in studies of wetting phenomena
and its limitations are well known (Sullivan and Telo da Gama 1986, Dietrich 1988).
Equation (34) assumes that the free energy arising from repulsive interactions between
fluid molecules can be treated in the local-density approximation: fi(p) is the Helmholtz
free-energy density of a uniform hard-sphere fluid of density p. The second term in (34)
treats attractive forces in mean-field fashion: w,(r) is the attractive part of the pairwise
potential between two fluid molecules. Such a functional cannot describe oscillatory
density profiles and it omits some of the effects of capillary-wave fluctuations. We will
comment on this later. Finally, u,(p) = df,/dp is the chemical potential of the uniform
hard-sphere fluid.

Within the context of density-functional theory, G(ry, r,) is obtained via (29}, i.e. as
the inverse of the direct correlation function C(ry, r,). The latter is the second functional
derivative

&F|p]
Clr,n)=0—"—"— 36
1) = B s rop(r) G0
evaluated at the equilibrium density. In the present model Cis very simple:
6(ry —r2)
Clri,r)) =—"——""=++ Bw,(|r, — r 37
( 1 2) p(rl)Xh(p(rl)) ﬁ 2(| 1 2‘) ( )

where x,(0) = (Bp du,/dp) ! is the susceptibility of the uniform hard-sphere fluid. If,
in addition, the attractive fluid—fluid potential is chosen to be of Yukawa type,

walr) = ~ R (38)

where o= —[drw,y(r) is the integrated strength and A~! is the decay length, the
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transverse Fourier transform can be performed, giving an explicit expression for
C(zy, z5; Q)—see 1. (We specialise once more to a three-dimensional fluid in a potential
V(z) where p(r) = p(z).) The 0z equation (29) then yields an integral equation for
G(zy, z5; Q). In 1 it was shown that this equation can be converted into a second-order
differential equation

i s(x1, %25 Q) _ 24 -2 s(x1, X33 Q)
1 U ) =1+ 0747 ~ apotra (o)) S o (39)
with the boundary conditions for x; = 0
.8 (s(0, x5 Q) 2y1250,0; Q)
lim — | ———=] = —afA 1 R 39b
s Gty ) ™ oo + 1+ @422 S8 (%)
and for x; >0
(9 s(x]’XZ;Q) 24 -2 1/2 S(XI,O; Q)
— ] = A —_— 39
anO 09X, ( xn(p(x2)) > (1+0 ) Xn(Pw) (%)

Here x = Az and p,, = p(07) is the density of the fluid at contact with the wall; we assume
V(z) is infinitely repulsive for z < 0. The function s is defined as

G(zy,25; Q) 3 8(zy — z,)
oG | py PED) (40)

Itis important to recognise that (39) determines the pairwise correlation function of
the Yukawa model fluid for any external (wall) potential—the dependence of s on V(z)
isimplicitin the profile p(z). Later we shall examine explicit solutions of (39) for different
choices of V(z) but first we deduce some consequences of (39) for a general wetting
transition. We suppose that, beyond a certain distance from the wall, which we will
denote A, the density profile is essentially constant and equal to p;, the density of the
liquid that coexists with the bulk gas at u = ug,. The differential equation for the zeroth
moment s4(x;, x,) = s(x{, X,; 0) can then be approximated by

s(zlaZZ; Q) =

9* <so(x1,x2)> 5 (So(xl,x2)>
—S\l—=) =ai | —— Atz x, = AA 41
9x3 \xn(p(x2)) l xn(p(x2)) : e
where a, is the dimensionless inverse bulk liquid correlation length (see I)
dy -191/2
a = [1 - afpixa(e)]"? = {1 - (d_pk;) ] ‘ (42)

Equation (41) predicts exponential increase of correlations with x, increasing towards
At, the thickness of the liquid film. Setting z, = ¢ and ignoring the variation of y;, with z,
it follows that

so(t, z2) ~ sq(t, A) explra;(z; — A)] t=z, > Al

When both particles lie in the edge of the film, so(z, ) ~ &f since (17) is valid within the
density-functional approximation, but with non-vanishing density gradients (Tarazona
and Evans 1982) at a transition. Thus the zeroth moment should exhibit the following
decay

so(t, z2) ~ Ef exp[—Aa,(t — z,)] t=z,>A (43)

for both complete and critical wetting. The behaviour of 5((z, z,) depends on the relative
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strength of the singularities of & and ¢, which differs between complete and critical
wetting. More specifically, in the light of the sum-rule analysis, we might expect G(z, A)
to be singular for critical wetting but finite for complete wetting.

3.2. Wetting characteristics for exponential wall-fluid potentials
We consider an external potential of the form

v ={ " Y (44)
z) = 44
— gexp(—4,2) z>0

where ¢ is the well depth and A,(>0) is the inverse decay length. In the special case A, =
A, so that fluid—-fluid and wall-fluid potentials have identical decay lengths, the density-
functional theory reduces to that employed by Sullivan (1979, 1981) in his pioneering
study of wetting transitions. With this choice the integral equation (35) for the profile
can be converted to a differential equation, which is easily solved by quadrature.
Sullivan showed that the fluid undergoes a continuous (critical) wetting transition at
bulk coexistence, u = uy,(T), when ¢ is increased to ¢,(T) satisfying

ap(T) =2¢,(T). (45a)
A critical drying transition occurs when ¢ is decreased, at u = u}(T), to the critical
value ep(7T') satisfying

apg(T) = 2ep(T). (45b)
The wetting characteristics of the Sullivan model are well known (Sullivan 1979, 1981,

Tarazona and Evans 1982). For complete wetting, € > €,(T), the thickness of the liquid
film diverges as

At~ —ait In|dul (46a)
the transverse correlation length as
& = (01g/Aphay |Sul)'? (46b)

and o, = 1.
Equivalent results apply for complete drying with g, replaced by a,, the correlation
length of the bulk gas. At the critical wetting transition we find

At~ —a!ln|bg (47a)
_(oga(l — a%)) 12
El! - < 81a’de? (47b)
and
a, =0 (47¢)

with equivalent results for the drying transition. The critical exponents have the appro-
priate mean-field values givenin § 2. Only second-order transitions occur in the Sullivan
model; there is no first-order wetting transition.

This situation changes dramatically when A, # 4 so that the potentials have different
decay lengths. Numerical results by Tarazona and Evans (1983) and Teletzke e al (1983)
showed that the wetting transition could become first-order when A, < 4, i.e. when
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the wall-fluid potential is longer-ranged. Hauge and Schick (1983) reached the same
conclusion from a perturbative treatment of the same model. More significantly for our
present purposes, Aukrust and Hauge (1985, 1987) (aH)T considered the situation
b = A,/A > 1, where the wall-fluid potential is shorter-ranged, and found critical wetting
transitions with non-universal, b-dependent correlation-length exponents, provided
a < b <2a.

The film still thickens logarithmically, but with a different amplitude

At~ —(b—a)!In|b¢ (484a)
whereas & ~ |8¢| i with
b
= <b<2a,b>1
4! 2(b — al) day b a, (48b)
Since v > 1, in this regime the exponent relation (24) implies
b-2
a, = aal <0. (48c¢)
—a

AH showed that & = 1 (the Sullivan case) corresponds to the tricritical line of the model.
When b = 2g,, but b > 1, the critical wetting transition reverts to the Sullivan type with
characteristics given by (47). The location of the wetting transition cannot be determined
exactly when b # 1. From a perturbative analysis AH find

[ _al(T)] 2
e D) T G b)

for a; < b < 2a, b > 1. This result connects smoothly to the Sullivan result (45a) at
b=1.

AH point out that it is remarkable that a system in which all the relevant potentials
are exponential should exhibit such a diversity of critical behaviouri. The fact that «; is
zero for certain regimes but negative for another has important repercussions for the
behaviour of the pairwise correlation function near the wall, as we shall see in later
sections.

2ey(T) (49)

3.3. Correlation functions for the Sullivan and AH models

We are now in a position to list some explicit formulae for moments of G(ry, r,) for
exponential wall-fluid potentials. In I we showed that for the Sullivan model a solution
of (39a), with Q = 0,is p’(x,)/p(x,). This result follows because the Sullivan differential
equation for p’(x) can be cast into the same form as (39a). The full solution for sy(x1, x5)
is

S0, 1) = /lp'(xl)P'(xz){ 20(09)P

p(x)p(x2) Wpw — 207 e)py,

o a dps\ ™2 duy
+—[9(x1 ) dx3<—— + 6(x, —xl)f dx, ]} (50)
B 0+ dx; dxs 3
t Our notation differs from that of AH. They use § for our ratio b and A for the inverse bulk correlation length
a,.

+ The exponents for complete wetting are the same for all b.
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where 6(x) is the Heaviside step function, p}, = dp/dx atx = 0% and u, = u(p(x)). The
local susceptibility (see I) is

(e )y — pu)p'(x1)py,  Bap'(x1)
(pw — 207 e)p(x1)py, p(xy)
*) p(x2)xn(0(x2))
. f dx: < p'(x;)

1) = xn(p(xp)) +

2
) [0y — p(x2)]- (51)

0t

Both equations simplify considerably for a particle at the wall. Reverting to the original
variables and correlation function we find

p/(Z)Xh(pw)pw

Gy(z,0) = (0. - 2a-'e) z>0 (52)
and
N (pb - pw)
x(07) = xn(pw) (1 + (o —2a o) 20(_18)). (53)

Equations (52) and (53) agree with the exact results (9b) and (9¢) for a hard wall (¢ =
0), apart from a factor of y,(p,,) in both equations. The origin of this factor was described
in I; it arises from the failure of a local-density approximation to treat properly infinite
repulsion at the wall—the sum rule (9a) is not satisfied exactly in this theory.

Using (30) another important formula was derived in I for the second moment
Gs(z,, z,). This simplifies to
—G,(07,07) Py

= — dxjdx "(x)p' (x,)Cy(x1, x
o0 " e 4n | ane )Gt

2p5 * ,
o 2a g ) dx2 P () G0, x2) = p3CH(0,0)
A 0+

(54)

when both particles are at the wall. Note that the second moment C, is a simple function
for the Yukawa potential (38):

Cz(xl,x2)=%(1+lx1 = xa]) exp(—jx; — x3]). (55)

For the hard-wall case we showed that the Rs of (54) is o (= BQE)/A). In other words
G, obtained from the Sullivan model is consistent with the exact result (9d), apart from
an unimportant factor of y3 (o).

The above formulae all refer to the Sullivanmodel, b = 1. When b # 1, (39a) remains
valid but the equation for the derivative of the density profile no longer reduces to a
second-order differential equation having the same form as (392) at Q = 0. This means
that p’(x,)/p(x,)is not asolution and an explicit formula fors(x,, x,) cannot be derived.
However, another more transparent integral equation for sy(x, 0) can be obtained from
(39a). Setting sq(x, 0) = f(x) yn(p(x)) dun/dx, a second (integral) relationship between
the arbitrary function f{x) and sy(x, 0) follows from (39a) and the differential equation
for d y,/dx resulting from (35). Eliminating fthen yields a new equation for so(x, 0) that
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involves constants of integration. These can be evaluated using the various boundary
conditions. We omit details and quote the final equation:

sote,0) = L g be(lﬁ; b?) fo ors(22) 5

p(x1) dx;
* . so(x3,0) exp(—bx3)
s f S NCCUR (36)
where B is a constant given by
_ be(1 — b?) = s55(x, 0) exp(—bx)
B = |:aXh(pw)+ p\’vll prh(pw) J:)+ dx Xh(p(x)) :l
X [apy — b(1 + b)e] . (56b)

Although (56) reduces to the correct Sullivan limit (52) for b = 1, it is clear that, for
any other value of b, sy(x, 0) is a much more complex function. Only when both particles
are at the wall does (56) adopt a form similar to (52), i.e.

50(0,0) = Ap},B/py,. (57)

We will make use of (56) and (57) is our discussion of critical wetting and the exponent
&.

That these explicit formulae for correlation functions are consistent with the exact

sum-rule predictions for the hard wall suggests that it is meaningful to investigate

their consequences for models undergoing wetting transitions. {The particular case of

complete drying at a hard wall was analysed in I.) The exact sum rules of § 2.1 simplify
for the special case of an exponential wall-fluid potential. Since

Vi(z) = —A,V.(2) z>0
(see (44)), equation (2) for the density profile can be written as

p(21) = Golzr, 0) + i | 42 Vee)Golzrnz) 2> 0
0+

where the first term on the RHS arises from the hard-wall discontinuity, cf. (95). This
equation can then be used to reduce the RHS of (10) to a single integration

oT *
(55) =@ 46w 0 < pu-p] (58a)
0E u, T 0+
= (eAy) Hpwx(07) = pol. (58b)
Similarly the rHS of (115) can be reduced to an expression involving Gy(0, 0) only:
32Q® /A _ .
(555) =i b - G0 ~ Ao -pIl (9)
'8

As before, the quantity Go(0, 0) is G,(0, 0) minus the delta function contribution—see
(1b). Note that for a hard wall (¢ = 0) the terms in square brackets in (58) and (59)
vanish identically by virtue of (9). We do not expect the correlation functions obtained
from the density-functional approximation to satisfy sum rules (58) and (59) identically;
factors of x,(p,,) will arise as in the hard-wall case. However, (58) and (59) require any
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singular contributions to Gy(z, 0) and G(0, 0) obtained from our approximate theory to
be consistent with the singularities in (3T'/d€), r and ((8?Q®/A)/3€?), r respectively.
In particular (59) requirest G§"¢(0, 0) ~ |8¢|~*. Thus, these equations provide a useful
check on the internal consistency of the density-functional results.

3.4. Behaviour of the correlation functions at wetting transitions

3.4.1. Complete wetting from off-bulk coexistence. Complete wetting and drying in the
Sullivan model (b = 1) was analysed in I. The results can be summarised as follows.
G(zy, z,; Q) exhibits Ornstein-Zernike behaviour (16) when zy, z, ~ ¢ and §; is given
by (46b). The local susceptibility y(¢), obtained from (51), diverges as given in (20)
(Tarazona and Evans 1982), i.e. as p'(#)|6ul~!. For complete wetting £ > ¢,(T) and
Pw > pi(T); the density profile decreases monotonically with z. The denominator in (52)
and (53) is non-zero, so that both G(t,0) and y(0*) remain finite at Su = 0. These
results are consistent with the exact sum-rule predictions for drying at a hard wall (§ 2.1).
That G(t, 0) is finite is also consistent with (43) since, from (46), &f exp(—Aa,r) ~ 1 for
complete wetting. Caution must be exercised, however, in employing (43) in this case.
More careful analysis shows that (43) applies for z, > A ~ t/2. When z— 0 there is no
‘singular’ contribution to Gy(z, 0) from the liquid—gas interface, as is evident from (52).
When both particles are at the wall G,(0, 0) depends on purely local quantities p!, and
Pw- At complete wetting these are characteristic of the wall-liquid interface and contain
no information about the liquid—gas interface.

The second moment G,(z4, z,) is somewhat more difficult to analyse. In an explicit
equation was obtained for G,(z, 0) for the particular case of a hard wall and we showed
that

_pl(z)Xh(pw)alg
hagAployl

G,(z,0) ~ t2<z <t (60)
Taking the ratio of (60) and (52) we obtain a transverse correlation length that diverges
as |8u| ™12, i.e. in the same fashion as &§—see (46b). The capillary-wave fluctuations do
not manifest themselves in this way when z < /2. Then there is no diverging transverse
correlation length. We would expect the same consequences for any complete wetting
or drying situation in the Sullivan model. Equation (54) implies that G,(0, 0) acquires a
contribution from the depinning liquid-gas portion of p’(z) in the limit Su — 0*. Use of
the Triezenberg and Zwanzig (1972) formula for o, (see I) shows that this is a finite
contribution —x&(py)p2 0B/ (pw — 207 e)*.

Complete wetting when b # 1is essentially the same as that for & = 1. Asmentioned
earlier the critical exponents are the same and the film thickens as in (46a) if ¢ < b, or
asAt ~ —b~!ln |du|ifa, > b. Ineithercasesy(t, 0)in (43) remains finite. This is confirmed
by further analysis, which shows that there is no contribution to B, in (56a), from the
liquid-gas interface and that the second term in this equation is non-singular.

3.4.2. Critical wetting at bulk coexistence. We focus on critical wetting e — €, (T'), where
the bulk is gas at Su = 0*. The Sullivan model (b = 1)is exceptionalin thatfor e < ¢,(T)
the density profile, at coexistence, is a portion of the free liquid-gas interface (Sullivan

+ Equation (59) justifies, for the special case of exponential wall potentials, the argument, givenin § 2.2, that
G (a, a) ~ |6g| 7%
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1979, 1981). At the transition pw = p(T)and p}, = 0. From the equation for the density
profile and the boundary condition at the wall, it is straightforward to show that

dyh>g 2a, O¢
_— = — o] 0~ 61
< dx x=07t 1- da £ ( a)

for the (critical) wall-gas interface; d¢ = £ — ¢,(T). It is instructive to consider also the
(non-critical) wall-liquid interface (du = 07), for which

duh)' —2a,8¢
— =— -, 61b
<d.x =07 1+a1 0e—=0 ( )

Thus py, is negative for wall-gas but positive for wall-liquid interfaces. (Note that
0 < a) < 1.) When é¢ > O the wall-gas interface is wet by liquid and (615) applies to both
the critical and non-critical interfaces. There is a discontinuous jump in (8p.,/d€) 1 on
the critical interface at the transition. This gives rise, via (52), and some algebra, to an
equivalent discontinuity in Go(0, 0), i.e.

) Ap2,
Go0.0 =E2E o) es0- (620)
-
and
- A0%
Go(0,0) = PPy 20y sem0 (620)
1+a1

with (62b) applying to both interfaces at §&¢ = 0*. The difference between these results
can be identified with the singular contribution:

iy . . 2a,Bakps,
G§7(0,0) = G, (0, 0) — Go(0,0)' = -i'—ﬁ_a;l?*x%(pw) 6e—0". (63)

The sum rule (59) would identify this difference with

a2s2<s>/A>’ _<a29<s>/A>g J

ae? a2

D= ﬂz;‘z)tZ[(

w. T w, T
since the other terms in (59) are identical on both interfaces at & = 0. Sullivan (1981)
has investigated the dependence of the surface tension on de. Using the results in the
appendix to his paper we have evaluated D and find this quantity is identical to the RHS
of (63), apart from the expected factor of 2 (p,,). That the two routes to G§"(0, 0) give
consistent results attests to the internal consistency of the theory, as remarked in § 3.3.
We conclude that Gy(0, 0)% has a finite, singular contribution at the transition,
consistent with exponent o, = 0. The second moment G,(0, 0), on the other hand, now
diverges as |8¢|72. This follows directly from the explicit formula (54). The transverse
correlation length at the wall (defined by (32) witha = 0), & ~ |6¢| ™!, which is the same
divergence as that of &§in (47b). More precisely, from (63), (54), (47b) and the definition
(32), we find &} = a,§;.
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From (51) we find (Tarazona and Evans 1982) that x(¢) again diverges as predicted
by (20), i.e. as p'(¢)|6¢€|~2. The susceptibility at the wall y(0") has, from (53), a singular
contribution

(pw - Pb)“

20¢ ©4)

XE(07) = xn(pow)
with p,, — p,— Ap at the transition. (¥(0*) is finite on the non-critical interface since
Pw — Py vanishes as de.) Sum rule (58b) identifies x*"¢(0*) with the singular part of
erpy' (3T /3¢€), r. This latter quantity can be evaluated explicitly in the Sullivan model.
Using methods given in the appendix of Tarazona and Evans (1982), we find

e 2e(pw — pv)
| it = —
02 (G = e )

which, apart from the factor of y,(p,,), reduces to (64) at the transition, again attesting
to the internal consistency of the theory.

Equation (52) implies that Gy(z, 0) ~ p'(¢) |6}, which is consistent with the pre-
dictions (27) and (28), taking a = 0. The same exponent (—1) follows by inserting the
critical wetting characteristics (47) into (43). In this case A is a microscopic distance,
which can be taken to be zero, at the transition. Critical wetting in the Sullivan model is
characterised by capillary-wave-like fluctuations that extend all the way to the wall.

A similar scenario emerges when b # 1. The details are sufficiently different to
warrant separate discussion, however. Now the density profile at the transition is no
longer a portion of the free interface and p, # 0. The constant B in (56) remains finite
at the transition; the denominator in (56b) does not vanish when ¢ — €,(7)—see (49).

Direct analysis of the integral equation (56) is not straightforward. It is more con-
venient to return first to (43), which remains valid for b # 1. The exponent v that
describes the divergence of &, and the amplitude of t depend on b, however. If we insert
the appropriate values, as given in § 3.2, (43) yields

Go(t, A) ~ |6¢] 7! (66)

for all b for which critical wetting occurs. This result is consistent with (28). Moreover
we expect it to apply for A = 0, consistent with the divergence predicted by sum rule
(584a); 3, = O for all relevant b. The argument that leads to (43) can be extended to give

GiPe(A, A) ~ &F exp[—24a)(t — A)]. (67)
Setting A = 0 and inserting the wetting characteristics we obtain

constant b=2a

68
’68}(212[—}3)/(17_“1) a, <b<2a1,b>1 ( )

Gi(0,0) ~ |

which is consistent with the requirement G§"(0, 0) ~ |5&| ~%. If we shift attention to
(56) and (57) and recall that at contact the density profile and its derivative are the same
on both the critical and non-critical interfaces, it follows that B must also be the same
when the singular contribution to s4(0, 0) vanishes at the transition (o, < 0) but should
be different when the singular contribution is non-vanishing (&, = 0). Any singular term
must arise from the integral in (56b). But it is easy to see that the singular contribution
to the integral is proportional to Gy(0, 0), so B doesindeed exhibit the correct behaviour.
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There is no explicit formula for the second moment when b # 1 but the Ornstein-
Zernike relation (30) combined with (66) gives, consistent with (31},

G,(0,0) ~ |6¢|? (69)

for all relevant b. Although G,(0, 0) diverges more slowly than G, (¢, {) ~ |8¢&| ~*I, with
v| = 1, the transverse correlation length &}, obtained from the ratio of (69) and (68) still
diverges as & ~ |d¢g| 1.

4. Relationships between £ and ¢ for critical wetting in three dimensions

Critical wetting in d = 3 with short-ranged potentials has received much attention
recently (e.g. Dietrich 1988). The application of RG methods to effective interfacial
Hamiltonians (Lipowsky er al 1983), Brezin et al 1983, Fisher and Huse 1985) leads
to predictions of non-universal critical exponents that depend on the dimensionless
parameter o = (470,,53) 7!, where &, is the bulk correlation length of the phase that is
preferentially adsorbed. Such effective Hamiltonians consider the displacement of the
liquid—gas edge of the wetting filmin a ‘pinning potential’ thatisidentified with the mean-
field wall-fluid interfacial tension; all fluctuations other than the capillary-wave-like
fluctuations of the depinning interface are averaged out. In d = 2, exact solution of the
interfacial Hamiltonian yields the exact Ising model results quoted earlier. In d = 3,
Monte Carlo results for the same effective Hamiltonian (Gompper and Kroll 1988) are
in agreement with the RG predictions, whereas extensive simulations (Binder et a/ 1986,
Binder and Landau 1988) of an Ising model with a contact surface field appear to yield
only the mean-field value »| = 1 for a situation where w is such that RG theory would
predict substantial renormalisation, v~ 6. Various explanations of the discrepancy
between the results from the Ising simulations and those from study of the interfacial
Hamiltonian have been put forward (Binder and Landau 1988, Dietrich 1988, Halpin-
Healy and Brezin 1987, Mon et a/ 1988, Halpin-Healy 1989), none of which we find
totally convincing. Given this background it is important to enquire whether the RG
results can be derived by methods appropriate to a full many-body Hamiltonian descrip-
tion of a continuum fluid adsorbed at a wall. Henderson (1987b) has made a promising
step towards this end using sum-rule arguments and making certain assumptions for the
effects of capillary-wave fluctuations. Here we have the somewhat less ambitious aim
of rederiving the RG relationships between the thickness ¢ of the wetting film and the
transverse correlation length &, using results from § 2.

We begin by recalling that naive scaling analysis for critical wetting is problematic in
d = 3. This follows as a consequence of the exponent relation (26) and from the fact that
RG theory predicts exponential growth of §; (v) = =) for w = 2. A careful treatment of
scaling (Parry and Evans 1989) implies the relationship

&) ~ exp(ci) (70a)
where c is a constant, which implies, in turn
EL~(Ing)'? ~r2 (70b)

While the second of these is obeyed by the RG results for all w, the first is obeyed exactly
only if w <34. For w >} there are logarithmic factors (see below) present in the RG
results. In order to investigate the origin of these terms, which constitute corrections to
the scaling prediction, we make use of the analogue of the Cp—Cy thermodynamic
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relation (14). Assuming hyperscaling is valid at the upper critical dimension, which is
known to be correct within the RG analysis, we have, for d = 3, Q),/4 ~ &%, Then,
since (0T /ou). r ~ &f, equation (14) implies

2 2
Sere=k(2) & @

where K is some (unknown) constant and e refers, as usual, to either the surface field or
the temperature. Setting

d
y= aln Ei(e)

can be re-expressed as

dy d¢

e -y2(e) + K(-d—g)z. (72)

In the light of the RG and scaling results we suppose that

constant X (8g) " B=0

. } (73)
A(8e) " exp[p(be)~F] B>0

i) = |

where A, n, ¢ and 8 are constants, f3 to be identified later with exponent ;. It is then
straightforward to determine #(¢) from (72) and show that

(6) = {constant X ln(ée_) - [3:’ =0 (74)
(2/KY)[¢(8e)™F — H(dn — B — 1) In 8¢] >0
in the limit d¢ -~ 0. Then
g = A(8g)~B+D/4 exp(3K Y2y for all n, >0
in the same limit. This last result can be expressed as
§i(In &)V o« exp(BK*)  B>0 (75)

since, from (73), In &, ~ (8¢)~# at leading order. Equation (75) is the main result of this
section and we now compare its predictions with the RG results of Fisher and Huse
(1985), which are summarised below:

fs = 0(ln) vj=(1-w™! & ~ exp[t(1 + 2w) '] w<}
B, = 0(In) vy =(V2- V)2

E/(In &))~8 ~ exp[t(8w) 2] I<w<2
By=2 & ~ exp[C'(6e)7*] E/(In &)~ ~ exp(t/4) w=2
Bs=1 & ~ exp{(Cde) [In(Cd&) ! + Inln(Cde)~! + O(1)]}

E/(In &) ~%® ~ exp[t(8w) 2] w>2

(76)
where Cis an w-independent constant and C’ is a constant.
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Comparison of (74) and (76) suggests that the relevant values of 8 (=) are 0, 1 and
2, so that our present thermodynamic argument predicts (70a) for 8, = 0 and

g(In &)~ ~ exp(constant X ) Bs=1 (77a)
or
&/(In &) ~3® ~ exp(constant X ) B, =2. (77b)

These results are very similar to the explicit RG results (76) but, in each case, there is a
discrepancy of a factor (In &)Y®. This observation becomes even more puzzling when
we recall that the RG treatment of Lipowsky et al (1983) yeilds precisely (77a) for 8, = 1.
More specifically Lipowsky et a/ found

B¢ = 0(In) vi=(1-w! & ~ exp[t(1 + 2w)7"] w <1
B, =1 & ~ exp(constant X de~1) (78)
§(In &) ™2 ~ exp(t X constant) w>1

in a theory based on a cruder renormalised effective potential, i.e. one that provides a
less realistic description of a repulsive wall.

For the case 8= f,=0(In) equation (71) has the simple solution (70a) with
&~ (8¢)™" and the exponent n (=v)) is undetermined. Thus, the thermodynamic argu-
ment recovers the scaling result, which is in agreement with both RG analyses. That vyis
undetermined within the thermodynamic and scaling treatments is a direct consequence
of (26).

Returning to the situation where 3, = 1 we are forced to conclude that, if (71) gives
a complete description of the singularities, Lipowsky’s RG analysis is the one that gives
the correct relationship between & and ¢. This is contrary to the ‘accepted wisdom’. On
the other hand, corrections to hyperscaling would, presumably, change our thermo-
dynamic analysis, alter (71) and provide the factor of (In §”)1/8 that would bring our
results into agreement with those of Fisher and Huse (1985), i.e. (76). The origin of
any such correction terms remains obscure, however, and we shall see in § 5 that
discrepancies of this sort also arise in alternative approaches to the problem.

The analysis of this section demonstrates that as well as yielding the fundamental
exponent relationship (24) the thermodynamic argument is capable of accounting for
remarkable, non-trivial relations between & and t which supersede those from the scaling
ansatz. Finally, we note that the solution (75) is unaffected by allowing ¢ to diverge as
In Se.

S. Critical exponents for critical wetting via unfreezing of capillary-wave fluctuations on
a mean-field profile

In this section we present the results of an analysis that has the same aim as that described
in § 4 but which makes use of (13), or equivalently, the sum rule (11a), and an explicit
model for the density profile p(z) near the wall. For finite-ranged wall potentials (13)
implies

(a QL/A

- )M ~ —ap(a) (79)

where a is a microscopic distance. Clearly any singular behaviour in derivatives with
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respect to £ of QW is reflected in derivatives of p(a). We assume that, in general, the
profile near the wall can be expressed as a short-ranged, unrenormalised part p(z),
associated with (d0,,/3¢€),, rin (25), plus a contribution §(z) arising from the unfreezing
of the capillary-wave-like fluctuations on a bare profile py(z) that corresponds to the
mean-field solution for a liquid-gas profile whose dividing surface is located near the
edge of the wetting film at z ~ ¢. For a fluid in which the intermolecular potential is short-
ranged, the tails of the (mean-field) density profile decay exponentially towards their
constant, bulk values and the profile takes the form

pur(z — 1) = —aexpl(z — 1)/&] + bexp[2(z — 1)/&] + . . . z<t (80)
where @ and b are constants. In the particular case of the Yukawa fluid, the bulk liquid
correlation length &, = (Aq))~!, with g, given by (42). The fluctuations are unfrozen on
the bare profile according to the procedure of Percus (1981), as adopted by Henderson
(1987b). The renormalised profile is given by

p() = 2xE2) 2 [ dy pur(z = 1 =) exp(=y/28%) (51)

where £, is the interfacial roughness introduced in (21). Equation (81) is an extension
to films of the standard unfreezing procedure used for liquid—gas interfaces in the
presence of a gravitational field, where it leads to the well known error-function profile,
¢.g. Bedeaux and Weeks (1985). Henderson (1987b) provides a careful discussion of the
assumptions underlying (81) in the present contextt. Combining (80) and (81) we obtain
for z close to the wall

p(z) = —aexp(z/E)I(ER") + b exp(22/E)I(2E5") + . . . (82)
with

(p) = @7&1) ™ | dxexp(=px) expl—(x = 07/21] (83)
0

For d < 3£, diverges as ¢ diverges (at the wetting transition) and it is evident that the
form of §(z) will depend sensitively on the relative magnitudes of £ | and ¢, which depend,
in turn, on the transverse correlation length &;. From the limiting behaviour of the error
function it follows that

exp(p?&i /2 — pt) pEl <t (84a)

I(p) —

(.~ exp(—1*/287)
Qm)YV (pE, - 1/E))

In d = 3, the standard capillary-wave Hamiltonian yields (Buff et al 1965, Evans 1979,
Bedeaux and Weeks 1985)

p&i >t (84b)

t The exponential in (81) takes into account Gaussian smearing about the mean field profile. In principle one
should also include a term exp U(y, ¢) that accounts for wall-fluid and fluid-fluid contributions to the mean-
field interfacial free energy. For short-ranged forces we can take

% y<-—t
U = {constant —t<y<-—t+a
0 otherwise

where a is a microscopic length. Including such a U alters the amplitude of p(z) but not the form of the
singularity.
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3

(47fog) ' In(&)/E)*
= w&} In(§)/&,)?

when the cut-off for transverse wavenumbers Q,... = &;!. For sufficiently small w,
corresponding to a very stiff interface, we might suppose that the roughness is such that
28% < &yt. Thenboth I(£51) and I(2&,!) can be approximated according to (84a). More-
over we expect (70a) to be valid so that 7 = ¢, &, In(§;/&,) with ¢; now an w-dependent
constant. Using (85) the leading term in (82) yields

p(z) = —aexp(z/&) exp[(w — c1) In(§)/&)] w<c/4 (86)
for the profile near the wall.

We now use (79), with (25) and (234), to equate singular contributions. Since pg(a)
is non-singular we find

681—11/5 —~ &ﬁ”_cl

which implies the exponent relationship 1 — a, = v(c; — @). Then a,can be eliminated
using hyperscaling: 2 — «, = 2y|. We obtain

V| =(2+a)—c1)‘1. (87)

As expected, our argument is not sufficient to determine v explicitly. However, it does
provide a powerful consistency check on the RG results. The small-w regime corresponds
to the first of equations (76), sowe assume ¢; = 1 + 2. Then (87) yields v = (1 — w) 7!,
which is identical to the RG result for the exponent. Moreover, with this choice of ¢; the
condition 2% < &t requires w < %, which is precisely the RG requirement for this
regime. If this requirement is met, the terms in /(2&;7), I(3&;1), etc., in (82) are of
higher order than 1(&;!) and can be neglected.

For intermediate values of w it is feasible that &2 < &t < 2£%. Then I(&;!) is given
by (84a) but /(25;') must be approximated by (84b). The calculation proceeds as
previously withz = ¢,&, In(§/&,)so that the conditionontand & | requires2w < ¢, < 4w.
Under these circumstances the terms in /(2&;!), I(3&;1), etc., are again of higher order
than /(&,") and we obtain (87) for v, with ¢, replaced by c,. The RG result (76) for
intermediate w is

t= (8w)'?&[In(&)/&,) — #InIn(§/&)].
If we assume ¢, = (8w)"/?, equation (87) yields v = (V2 — V)2, in agreement with
the RG exponent, and the condition becomes # < w < 2, which is the same as the RG
requirement. Inthis case the procedure of equating leading singular contributions cannot
determine the coefficient of any In In & term that might be present. Note that to leading
order (87) implies

t= 2+ o - 1/v)& In(§ /&) w<2. (88)

The calculation can be extended to less stiff interfaces where w is large and
&% > &,t. Then all the terms in (82) must be approximated using (84b). If we take

t=c;&[In(§1/&) — g InIn(§)/&v)]

with g a constant, as is suggested by the analysis of § 4, and allow for exponential growth
of correlations, Q§),/A ~ &2, then (79), which now has the form

= £72(e) = pla)

can be solved for ¢; and ¢g. (Now all the terms in (82) are O(£7') and we are forced to

(85)
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make the assumption that the sum is a finite multiple of the first term.) We find
c3 = (8w)"2 and g = (38 + 2)/8f3, where f is the exponent that characterises the e-
dependence of §—see (73). Choosing S(=f;) = 1 or 2, as in § 4, we obtain

E/(In &) ™8 ~ exp[1(8w) 1] By=1 (89a)
E/(In &) ~ exp[1(8w) /] Bs=2. (89b)

The requirement &3 > &t is equivalent to w > ¢;3/2, i.e. @ > 2. Given that Fisher and
Huse’s (1985) RG results (76) assign 5, = 1 to the regime @ > 2, it is natural to suppose
that (894) is the appropriate result to compare with RG theory. Our present theory yields
the same coefficient (8w)~'2 in the exponential; when &) is exponentially diverging,
equating leading singularities is sufficient to determine this coefficient. Equation (89a)
exhibits a discrepancy with (76) of a factor (In 5”)1/4. Furthermore this result differs from
that of (77a) based on the Cp—~Cy, route. We do not have a convincing explanation for
the discrepancies, other than to note that there might be problems with the convergence
of (82).

It is instructive to examine the renormalisation when the wall-fluid potential is
exponentially decaying as in (44). Then the sum rule (13) becomes, upon integrating by
parts,

(aQ<S>/A> __p(0)

1 %*
Py . _A'—v";) dz p'(z) exp(—A,z).

The contact density p(0") can be considered as the sum of a short-ranged part, p,(0%),
and a renormalised part given, as previously, by (82). However, the integral cannot be
ignored. Using (81) and approximating pye(z —t) by —Apd(z — t), the integral is
proportional to {(4,) so that

)

(F2UA) o hitlp,0%) - @) + BICE ) + .+ G} 90)
u, T

We are now in a position to return to the Yukawa fluid that was treated earlier in mean-
field approximation. Then &;! = Ag; and A, = Ab, where g, and b are the dimensionless
quantities defined in § 3.2. Recall that the interesting case is when a; < b < 2a,, since
then the mean-field exponents for critical wetting are explicitly dependent upon b and
a,—see (48). It is clear that we can carry through the previous calculation but now the
boundaries between the different fluctuation regimes should depend on the magnitude
of 4,E% . If A,E%2 <t then both I(E;') and I(A,) can be obtained from (84a). Assuming
the former dominates, equating singular contributions in (90) again yields (87). Hauge
and Olaussen (1985) extended the RG calculation of Brezin er al (1983) to a model
Hamiltonian that included a term in exp(—A,f). From their paper one can show
that Aay = ¢, In & with ¢, = 2a,/b + bw/a, provided w is less than a critical value
w, = 2(a,/b)?. Using their result for ¢, in (87) we find

v = VH(G) = 0)/(1 - wb/2a1) w < w, (91)
where

_b
2(b - al)

is the mean-field result (48b). Since a, < b < 2a,, w. is restricted to the range 3 < w, < 2.

VH(CU = 0) =
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This result for the renormalised exponent is identical to that obtained by Hauge and
Olaussen (1985). Moreover the condition 4,£2 < ¢, which corresponds to 2bw < ¢,a,, is
identical to the condition w < w, so we conclude that the present procedure is com-
pletely consistent with the RG treatment in this regime. With the above value for ¢, the
terms in I(A,), I(2E;1), etc, are of higher order than I(£;1). Note that when b = 2a,, ¢,
reduces to 1 + 2w, (91) becomes vy = (1 — w)™! and w, =, so that we recover the
earlier results for wall potentials of strictly finite range.

Hauge and Olaussen (1985) argue that for 2 > @ > o, the second regime in (76) will
pertain and, by implication, so will the results for w = 2. In other words v should not
depend on g, and b for @ > w—see also Dietrich {1988). This conclusion is consistent
with the present treatment. The condition £;1£2 <t < 1,£2 isequivalentto2 > w > w,
if the RG result f ~ (8w)"2 In g/is assumed. I(&; ') remains the leading-order term in this
regime.

Perhaps it is appropriate to emphasise (although it must be abundantly clear!) that
our present procedure is not capable of determining explicit results for critical exponents
ind = 3. Thesituationis markedly different for d < 3where the fluctuations are stronger.
Here we do obtain explicit exponents for critical wetting.

The procedure for unfreezing capillary-wave like fluctuations is not restricted tod =
3; equations (81) to (84) also apply for d < 3. In these lower dimensions &, ~ ¢ (see
§ 2.2), so that (84b) is the only relevant limit and g(a) < &', Equating singular con-
tributions in (79) gives a new exponent relation

1= o= d<3 (92)
which, combined with the other relations (24) and (26), yields the explicit result
v = 2/(3d - 5) d<3 (93)

from which all the other critical exponents can be determined. For d = 2 we find v = 2,
Bs = 1, o, = 0, which are the exact results quoted earlier. This gives us some confidence
that summing the terms in (82), each of which is proportional to €71, does not introduce
additional singularities. It is interesting that a, = 4(d — 2)/(3d — 5) is positive for
2 < d < 3. This implies that Gy(a, a) diverges in these dimensions.

Note that if (93) were to remain valid in d = 3 it would predict the incorrect result
v| = 4. However, as we have seen above, &, is no longer proportional to ¢in d =3
and the fluctuations manifest themselves in a very different fashion in this borderline
dimension. The variation of v with dimension is a subtle matter that will be discussed
elsewhere, when we make contact with the work of Kroll and Lipowsky (1982), who
derived a formula equivalent to (93) using a very different procedure based on a field-
theoretic treatment of domain wall pinning, and with the results of Lipowsky and
Fisher (1987), who used a functional renormalisation-group treatment for an effective
Hamiltonian to connect behaviour in 4 = 3 to that in d < 3. The numerical results of
Lipowsky and Fisher are fitted by a formula that is quite different from (93). An
explanation of the difference will be given in a forthcoming paper.

Before ending this section we note that our procedure for obtaining critical exponents
or relationships between the various critical lengths differs from that of Henderson
(1987b). Although p(a) is calculated from the same formulae (82)—(85), Henderson’s
subsequent analysis of the critical wetting transition makes several assumptions in
addition to those described here. We believe that these are not fully justified and that
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Table 1. Singular contributions to the transverse moments of the density—density correlation
function G and the local susceptibility y(z) at the two types of wetting transition. The tilde
indicates that delta-function contributions are omitted—see text. The thickness of the
wetting film, ¢, and the transverse correlation length, §, diverge at the transition with critical
exponents f; and v, respectively; a is a microscopic distance. All unimportant factors of
proportionality have been suppressed in this table.

Complete Critical
Golt, 1) ('(O)g (o'
Gylt, a) o' () A OICE
Gyla, a) 0 |65
Gy(t, 1) —(p'(0))* &t —(p'(0)* &t
Gy(a,a) ~0j, ~0,(8t/9€)% 1
20 p (D& p' (D&
x(a) Pv (3t/de)ur

our present approach is more systematict. It is clear that a simple unfreezing of the
capillary-wave fluctuations on a mean-field profile leads to relations between & and ¢
that are consistent with the thermodynamic treatment of § 4 and with the RG results. The
origin of the w-dependence of the exponents and the amplitudesind = 3istransparentin
this formulation; it is via the roughness &, . In the purely thermodynamic treatment
doesnotenterdirectly; the w-dependenceis contained in the constants of proportionality
appearing in (71).

6. Discussion

In table 1 we summarise our main results for the singular behaviour of the transverse
moments of G at wetting transitions. The explicit density-functionalresults of § 3 confirm
the predictions extracted from the sum-rule analysis; they are completely consistent with
the results in table 1, provided mean-field exponents are invoked and the interfacial
roughness is ignored, i.e. & is set equal to a microscopic length. It is likely that a more
sophisticated, non-local density-functional treatment of repulsive forces would satisfy
the various sum rules exactly, but still with mean-field exponents, thereby removing the
extraneous factors of y,(p,)—see L. Incorporating capillary-wave fluctuations into a
density-functional approach so that p'(r) vanishes appropriately as r — = is difficult (e.g.
Evans 1989). Nevertheless we expect the form of many of the results in § 3 to remain
valid beyond mean-field approximation.

Although complete and critical wetting have many features in common it is clear
from table 1 that correlation functions do differ significantly between the two types
of transition. Singular behaviour, arising from the fluctuations, manifests itself more
dramatically in critical wetting. This is a direct consequence of the result 5§ ~ §;
fluctuations extend all the way to the wall in critical wetting whereas they are modulated
in a rather complex fashion in the case of complete wetting, for which there is no
divergent transverse correlation length when both particles are near the wall. It is
important to recognise that a divergent G,(a, a) does not imply a divergent (unphysical)

+ Henderson does not attempt to derive exponents for d < 3 and he cannot describe the w > 2 regime ind =
3; however, he does obtain explicit exponents for & < 2.
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surface tension. Careful analysis of (7), using (2), along with the explicit mean-field
treatment, shows that o remains finite at critical wetting.

One can ask how Eﬁ" varies with Sy and d¢, i.e. how the transverse correlation length
at the wall depends on the approach to the wetting transition. This is conveniently
tackled by means of scaling arguments. From the definition (32), using the relations
G(a, a) ~ (9t/9¢)? r and G§™(a, a) ~ (0°QE),/0€?), r and a scaling ansatz (see Parry
and Evans 1989) for Q) it is straightforward to show that

(&Y (81, 6¢))” = EfT(SuED) d=3 (944)

where § = §j(8¢; du = 0) and 7 is asuitable scaling function: 7(0) = constant. Ford < 3
the corresponding result is

(&1 (8, de))? = e~ 17(0ude ™) d<3 (94b)

with A = (d + 1)v)/2 and 7 another scaling function. The mostinteresting result emerges
when we set d¢ = 0 and take the limit Su — 0. Then

|6u) 12 6e=0,d=3

¥ (61, 0) ~ 95
SH( u ) {|6u|_2/(d+1) 58=0,d<3' ( )

Thus (95) predicts that if we follow a path in figure 1 at fixed temperature T = T,, the
correlation length at the wall will diverge with the same exponent as that which describes
the divergence of § in complete wetting from off-bulk coexistence at T > T,,. Such
behaviour is a further manifestation of the fact that fluctuations extend all the way to
the wall in a critical wetting situation; &} ~ &; on this path as well as on path (1).

Is there a simple approximation to G that will account for the various singularities
that are encountered at both types of wetting transition for systems with short-ranged
forces? Henderson invoked a single-eigenfunction ansatz for the singular or capillary-
wave contribution at small wavenumbers Q:

p'(21)0'(22)f(21)f(2,)
w(l + Ef Q%) ‘

Here (z) is, as in § 5, a portion of the ‘free’ liquid—gas profile whose dividing surface
lies close to z = t; w and f(z) are damping factors. The form of (96) is suggested by the
corresponding result for the liquid-gas interface in a gravitational field. There w =
pmgAp (Wertheim 1976, Evans 1979). When z; ~ z, ~ ¢, (96) must reduce to the
Ornstein—-Zernike result (16) and (17). Since in the edge of the film the density profile
is that of the detaching liquid—gas interface, p'(t) — p'(f) as t— o, and we can make the
identification

G™(zy,22;0) ~ (96)

w = Bo,ET? (97a)
and
fin=1 t—> (97b)

for both types of transition. Henderson argues that f(z) should be a smoothly varying
function that is unity for z greater than a microscopic distance but we will reconsider this
function below.

Rather than following Henderson’s approach, which uses (96) as the basis for a
theory of criticality, we first ask whether (96) is consistent with our results in table 1 and
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then whether this ansatz, with the prescription for 6(z) presentedin § 5, does predict the
correct critical exponents. The Ornstein—~Zernike nature of (96) implies that fluctuations
extend all the way to the wall; there is only one diverging correlation length &;. Conse-
quently the formula is not appropriate for complete wetting and for this case it is
necessary to go to a more sophisticated two-eigenfunction approximation to obtain a
proper description of correlationst—see I. The formula is clearly more appropriate for
critical wetting so we concentrate on this case here. When one particle is near the wall
and the other is in the edge of the film G§¥(¢, a) should reproduce (27), i.e.

st = ()~ (57) & 99

u T 0€

If both particles are at the wall we require
G§"(a,a) = (p'(@)f(@))’w™" ~ |6¢| 7

which, using (97a) and (98), leads either to the exponent relation (24) or to (71) in the
case of d = 3. The second moment

2
G$"(a,a) = —(p'(@)f(@)*Efw™" ~ -0y, <ﬁ>

and (31) is automatically satisfied. Thus, provided (98) is valid, G** will account for the
singularities at critical wetting.

We focus attention first on the mean-field case where there is no renormalisation of
Ome(z — ). From (80) we find for the Yukawa fluid

Our(a) ~ —explia(a— 0] +....

As the film thickness ¢z diverges logarithmically, with an amplitude that depends on the
decay length of the exponential wall-fluid potential—see (47a) and (48a)—the tail of
the liquid—gas profile vanishes as

. [—faev b=1
a) ~
pMF( _'6£,a|/(b"al) al<b<2a17b>1

as t— o, Inserting this result in (98) implies that & should diverge with the exponent
v|=1or b/2(b — a). But these are precisely the values obtained earlier from explicit
calculations. Thus, provided f(a) is a constant, G does account for the singularities
obtained in the detailed mean-field treatment.

Beyond mean-field theory, it is necessary to make some further ansatz regarding the
damping function f(z). We suppose that this has a scaling form

f(z) = F(z/§))

with F(6) having a Taylor expansion about 6 = 0 and F(1) = 1. Whereas in mean-field
theory the interfacial roughness &, can be set equal to the length a so that f(a) is
irrelevant, we can expect the factor f(a) ~ a£ ! tobecomerelevantinstrongly fluctuating
+ Evenind = 2, when &, ~ tand fluctuations are extremely strong, a divergent &}’ does not exist for complete
wetting or drying. The sum rules (9) for a hard wall also apply in d = 2 and G(z, 0) = p’(z) must still be
characteristic of the wall-gas interface for small z in the complete drying limit. Consequently there is no
singular contribution to G(0, 0).
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regimes. For d < 3 unfreezing the capillary-wave fluctuations gave the result §'(a) ~
&7! so that (98) implies

ET2 ~|dg~U+Psm2p d<3

and since &, ~ t and f; = (3 —d)»)/2 in this regime, we recover (93) for ). The cal-
culation can be repeated in d = 3 for the various regimes of w. Equation (86) yields
p'(a) ~ §f~“1forw < $and} < w < 2. Inboth of these regimes ¢ diverges logarithmically
and (98) implies

ELIEPTc ~oel7igy?

so that we recover (87) for »; the factor of £1' has no implication for the exponents if
w < 2. When w > 2 and & diverges exponentially we assume, as previously,

= c3§b[ln(§\|/§b) —¢ln ln(§i|/§b)]

with (73) for §j(¢). Using (98) to determine the coefficients ¢; and g we find ¢3 =
(8w)"?2, as before, but now g = (48 + 2)/84 so that

E/(In &) ~%* ~ exp[1(8w) 1] B, =1 (99a)
&/(In &) ~%/® ~ exp[t(8w) /2] Bs=2. (99b)

These results differ (by yet another troublesome factor of (In &)%) from those of (89).
This factor can be traced to the factor of £7! arising from our scaling ansatz for f(a). We
conclude that apart from this niggling discrepancy in the coefficient of the In In §; term
the simple ansatz for G** is remarkably successful in all dimensions and all fluctuation
regimes for critical wetting with short-ranged forces. It would be worth while inves-
tigating two-point correlation functions in two-dimensional models to see whether a
formula equivalent to (96) can be derived from a rigorous treatment.

In §§ 4 and 5 and in this concluding section we have sought to rederive or test the
consistency of the RG results for critical wetting in d = 3. We find that these satisfy the
various sum-rule requirements and that they are consistent with the explicit procedure
of unfreezing capillary-wave fluctuations on the mean-field profile. It is important
to recognise that the latter procedure leads directly to w-dependent exponents and
amplitudes, e.g. (87) and (88). The mean-field results are recovered if and only if w =
0. The w enters our procedure via (85), i.e. as the parameter that measures the amplitude
of the interfacial roughness &, . Provided the detaching liquid—gas interface is rough,
must be non-zero, and we conclude in keeping with Henderson that, if critical wetting
does occur in a continuum fluid near an adsorbing wall, this transition should exhibit w-
dependent exponents. This conclusion is, of course, consistent with studies based on
interfacial Hamiltonians. However, in those theories w™! enters from the outset as a
measure of the increase in energy associated with an increase in area of the interface.
Although our analysis is not immediately applicable to lattice models it does indicate
that non-universal, w-dependent exponents should arise for any proper many-body
Hamiltonian in d = 3, with short-ranged forces, and does suggest that further simu-
lations, for both Ising-like and continuum models, would be valuable. To the best of our
knowledge, no critical wetting transition has been found in simulations of continuum
fluids.
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