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J. Phys.: Condens. Matter l(1989) 7207-7238. Printed in the UK 

Wetting transitions in fluids with short-ranged forces: 
correlation functions and criticality 

R Evans and A 0 Parry 
H H Wills Physics Laboratory, University of Bristol, Bristol BS8 lTL, UK 

Recehed 12 May 1989 

Abstract. The nature of the painvise correlation function G for a fluid undergoing critical 
and complete wetting transitions at an adsorbing substrate (wall) is examined using various 
statistical-mechanical treatments. Sum-rule and scaling arguments predict that, in critical 
wetting at bulk coexistence, capillary-wave fluctuations manifest themselves throughout the 
wetting film, up to the wall, so that the (divergent) transverse correlation length 611 is the 
same for all pairs of particles. By contrast, in the case of complete wetting from off-bulk 
coexistence, a divergent correlation length is appropriate only for particles located in the 
liquid-gas edge of the wetting film. These predictions are confirmed by explicit formulae for 
the transverse moments of G derived from a mean-field, density-functional theory of a 
Yukawa fluid in the presence of a short-ranged (exponential) wall-fluid potential. The sum- 
rule analysis also provides a surface analogue of the Cp-Cv thermodynamic relation, which 
is used to determine a rigorous relationship between the exponents that characterise critical 
wetting. The same thermodynamic relation predicts corrections to scaling in bulk dimension 
d = 3 that are similar to those found in renormalisation-group (RG) studies of effective 
interfacial Hamiltonians. 

By unfreezing capillary-wave fluctuations on a mean-field density profile and making use 
of a sum rule that relates a derivative of the surface tension to the profile near the wall, 
relationships between Ell and the thickness tof the wetting film are derived for critical wetting 
with finite-ranged forces. For d < 3 this analysis predicts the correlation-length exponent 
vII = 2/(3d - 5 ) .  Ford  = 3 critical exponents depend on the dimensionless parameter w = 
kB T/4na&, where ulg is the liquid-gas surface tension, E b  is a bulk correlation length and 
t = ( 2  + w - l/vll)Eb ln(Ell/$b) provided w < 2 .  Our procedure accounts for the other fluc- 
tuation regimes found in the RG studies and provides new insight into the origin of the w-  
dependence of the exponents. The singularities that occur in critical wetting can be described 
in terms of a simple ansatz for G, similar but not identical to that proposed by Henderson. 

1. Introduction 

The subject of wetting transitions has attracted enormous theoretical and experimental 
effort since Cahn (1977) and Ebner and Saam (1977) first described a phase transition 
from partial to complete wetting by a fluid phase of the interface between an inert 
substrate, or spectator phase, and a second fluid phase that coexists with the first. Cahn 
(1977) and Ebner and Saam (1977) predicted that the transition would be first-order; 
for temperature T < T,  the thickness tof the film of the intruding phase is finite, whereas 
for T 2 T, this is of macroscopic extent so that tdiverges discontinuously at the transition 
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Figure 1. The two types of wetting transition. 
Critical wetting occurs on path (1) as the wetting 
transition temperature T, is approached from 
below at bulk coexistence p = pSnt( T )  (full curve). 
Complete wetting from off-bulk coexistence 
occurs on path (2) asp -+ psa,(T) for T > T,. The 
bulk coexistence curve ends in a critical point 
(Pc, T c ) .  

temperature T,. Later Sullivan (1979, 1981) showed, on the basis of a van der Waals 
(density-functional) treatment, that the transition could be continuous. Such a transition 
is now termed ‘critical wetting’. In the complete wetting regime ( T  3 T,) the thickness 
of the wetting film diverges continuously as the chemical potential p approaches its value 
at bulk coexistence ,usat( T ) .  

Critical behaviour accompanies film growth on both types of path (see figure 1). For 
critical wetting the relevant control field is T,  - T ,  at p = psat, whereas for complete 
wetting the relevant field is psat(T) - p ,  at T 3 T,. By varying the strength E of a 
substrate-fluid potential, so as to favour the adsorption of the intruding phase, critical 
wetting can be induced at fixed temperature. The relevant field is then E,( T )  - E ,  where 
E,( T )  is the strength of the potential at the transition. Excellent reviews of work on both 
types of wetting transition are given by Sullivan and Telo da Gama (1986), Dietrich 
(1988) and Shick (1989). 

Although the basic physics is well established from mean-field treatments of lattice- 
gas models and density-functional calculations for continuum fluids, there has been 
relatively little work on understanding wetting phenomena from a more fundamental 
statistical-mechanical basis. Apart from a few valuable exact results for two-dimensional 
Ising-like or solid-on-solid models (e.g. Abraham 1986), almost all efforts at including 
the effects of critical fluctuations are based on the framework of effective interfacial 
Hamiltonians, of the type first used to investigate capillary-wave-like fluctuations at the 
free interface between two coexisting fluid phases. Detailed studies of such Ham- 
iltonians-see the reviews above-have provided some insight into the nature of inter- 
facial fluctuations and have demonstrated that wetting is an extremely rich critical 
phenomenon. Some of the predictions are very striking. The upper critical dimension 
d, depends on the form of the substrate-fluid and fluid-fluid potentials. For algebraically 
decaying potentials, d, < 3, and critical exponents for a real fluid should be described 
correctly by mean-field theories and should depend explicitly on the inter-molecular 
forces. For finite-ranged or exponential potential functions, d, = 3 for complete and 
critical wetting. Fluctuation effects remain important in d = 3, especially for critical 
wetting, where intriguing, non-universal exponents are predicted. 

In this paper we ask the following questions: (i) To what extent can the predictions 
from the interfacial Hamiltonians and other approaches be obtained from the formal 
statistical mechanics of inhomogeneous fluids, appropriate to a realistic many-body 
Hamiltonian for a continuum fluid in an external (substrate) potential? (ii) What is the 
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nature of the pairwise correlation function G(rl, r2) in a fluid approaching a wetting 
transition? These questions are not unrelated. Both complete and critical wetting are 
characterised by the growth of capillary-wave-like fluctuations in the depinning fluid- 
fluid interface, and these fluctuations manifest themselves in Ornstein-Zernike behav- 
iour of G(rl, r 2 ) ,  provided both particles are located near t ,  i.e. in the edge of the wetting 
film. The associated transverse (parallel to the substrate) correlation length 511 diverges 
in the approach to the transition. Relationships between the critical exponents that 
describe the divergence of t(P,), ljl(vll) and the singular part of the surface excess free 
energy (as) are best understood, at the microscopic level, in terms of the singular 
behaviour of transverse moments of G(rl, r2) .  Effective Hamiltonian approaches do not 
provide a description of the density profile of the fluid or of the pairwise correlation 
function; the order parameter is simply the fluctuating film thickness. 

Our paper is arranged as follows: In § 2 we use statistical-mechanical sum rules and 
surface thermodynamics to derive critical exponent relationships. These are consistent 
with earlier results based on scaling ideas and with exact results in d = 2. With some 
mild assumptions the sum rules also allow us to make predictions for singularities in 
G(rl, r2) .  Critical and complete wetting are signalled by very different behaviour of the 
zeroth transverse moment G,(t, 0), corresponding to one particle in the edge of the 
wetting film, z1 - t ,  and one particle at the wall, z 2  = 0. G,(t, 0 )  remains finite as t + 
for complete wetting, whereas this quantity diverges with a universal exponent for 
critical wetting. The local susceptibility at the wall and the second moment G2(0, 0) for 
both particles at the wall also remain finite at complete wetting but are divergent in 
critical wetting. In § 3 we investigate correlation functions in a mean-field density- 
functional theory of the inhomogeneous fluid. For particular choices of the attractive 
fluid-fluid (Yukawa) and substrate-fluid (exponential) potentials, explicit formulae for 
the transverse moments of G(rl,  r2) can be obtained. These enable us to examine in 
detail the nature of correlations at the different types of wetting transition and to test 
the general predictions arising from the formal sum-rule analysis. The results confirm, 
within mean-field theory, the predictionsof § 2. Section 4 contains a derivation of certain 
relationships between correlation length 511 and film thickness t for the important special 
case of critical wetting with short-ranged potentials in d = 3. Using thermodynamic 
arguments and the idea that there is only one diverging correlation length in the inhomo- 
geneous fluid, we obtain relationships that are very similar to those obtained in explicit 
renormalisation-group calculations for interfacial Hamiltonians. In § 5 we derive the 
same relationships by unfreezing capillary-wave fluctuations on a bare (mean-field) 
density profile. This procedure also generates explicit results for exponents for critical 
wetting in d < 3. We conclude in § 6 with a summary of our results and some remarks 
about other aspects of wetting transitions. 

To the best of our knowledge the only other work on wetting that adopts a similar 
(correlation-function) viewpoint is that of Henderson (1986,1987a,b). While our present 
treatment of the sum rules owes much to his seminal papers, it differs in some important 
technical details and presents new results for the correlation functions at wetting tran- 
sitions. We deliberately avoid making Henderson’s single-eigenfunction assumption at 
the outset, since we found that this is problematic for the case of complete drying at a 
hard wall (Parry and Evans 1988). That paper, hereafter referred to as I, contains a 
detailed analysis of correlation functions for the Sullivan (1979,1981) density-functional 
model. Many of the results derived in I will be used here, but we have attempted to make 
the present paper self-contained. 
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2. Statistical-mechanical sum rules, relationships between critical exponents and form of 
correlation functions 

In this section we recall the most important sum rules for the properties of inhomo- 
geneous fluids in an external potential V(r) .  These sum rules are then applied to complete 
and critical wetting transitions in order to derive relationships between the various 
critical exponents that characterise such transitions for fluids near walls. While our 
presentation of the sum relies on the work of Henderson and van Swol (1985) and 
Henderson (1986),  our derivations of the exponent relationships and of the form of the 
correlation functions in the vicinity of transitions avoid making any specific ansatz for 
G(r1, r2). 

2.1. Sum rules 

The hierarchy of distribution functions is generated by successive functional dif- 
ferentiation of the grand potential Q with respect to u(r) = p - V(r)  at fixed temperature 
T:  

and 

where p(r) is the equilibrium one-body density and G(rl,  r2),  the density-density cor- 
relation function, is related to the total pairwise distribution function h(rl, r2). Also, ,U 

is the chemical potential and kgT.  For a fluid in an external potential V(r)  = V ( z ) ,  
the density of the fluid depends upon z only, p(r) = p(z) ,  and, at fixed ,U, ( l b )  leads to 

where the prime denotes differentiation with respect to z .  The (dimensionless) local 
susceptibility, for fixed external potential, also follows from (lb):  

Go is defined via the transverse Fourier transform: 

G ( z l ,  z 2 ;  Q )  = I dR exp(iQ R)G(zl ,  z 2 ;  R )  

= G 0 ( z 1 ,  z 2 )  + Q 2 G 2 ( z l ,  z 2 )  + . . .. (4) 

Here R and Q are transverse vectors, parallel to the interface. (In three dimensions RZ = 

(xl - xJ2 + ( y l  - Y ~ ) ~ . )  Equation ( 4 )  assumes the existence of an expansion in powers 
of Q2 and implies Ornstein-Zernike-like behaviour. We return to this point later. 
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Two quantities of central importance for wetting phenomena are the surface excess 
grand potential Qcs) and the adsorption, or coverage, r. The former is defined by 

s 2 ( s )  = s2 + p v o  

wherep is the pressure of the bulk fluid, far from any interface, at given (,U, T) ,  and V, 
is the volume occupied by the fluid. r is given by the Gibbs adsorption equation 

and is the excess number of particles per unit area A :  

r = lom d z  [P(z) - P b l .  

We have assumed that V(z) is infinitely repulsive for z < 0 so that p(z) = 0 for z < 0. In 
(5b), &(,U, T )  is the density of the bulk fluid. Differentiation of (5b) with respect to ,U 
and use of (3) give a surface susceptibility sum ruit 

where subscript b refers to a property of the bulk fluid. Equation (6) is the analogue of 
the well known sum rule that relates the bulk compressibility to the long-wavelength 
limit of the liquid structure factor. 

The second transverse moment of G is related to the surface tension 0 of the fluid in 
the external potential: 

0 = -P f; dzll-; dZ2 V’(Z,)V’(z*)G2(Z,, z2). 

In general 0 is not equal to s2(s)/A; there is an additional one-body contribution: 

Q(S)/A = 0 - lox d z  zp(z)V’(z). 

For the special case of a planar hard wall, with 

many of the sum rules simplify (Henderson and van Swol1984): 

PP = P w  =p(O+) 

Go(z, 0) = P ’ ( Z >  z > o  

x(O+) = Pb/Pw 
Q(’)/A = 0 = -P-’G2(0’, 0’). 

The implications of ( 9 )  for complete drying were discussed at length in I and we shall 
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recall some of these later when discussing effects beyond mean-field theory. Here we 
merely note that these results are exact and apply in any dimension d. For d 3 2, where 
liquid-gas coexistence occurs in bulk, (9a) indicates that in the limit p + pLt the density 
at contact pw is slightly less than the density of the coexisting gas. This is consistent with 
the premise that the interface between a hard wall and a liquid should be wet completely 
by gas (complete drying) for any temperature for which bulk coexistence occurs. 

Sum rules can also be derived by varying the strength of the attractive part of the 
external potential V,  at fixed (p, T).  These are especially revealing for the case of criti- 
cal wetting transitions (Henderson 1986). We suppose that V(z)  is defined such that 
a V ( z ) / a ~  V&(Z)/E is independent of the well depth E .  Then from (5b), (lb) and (4) we 
obtain 

= -p  loffi d z l  dz2  - v'(z2) Go(zl, z 2 )  
E 

while from (la),  and the definition of s2(s), we have 

Since V&(Z)/E is independent of E ,  ( l l a )  can be rewritten as 

It is convenient to treat E as a thermodynamic field. Then surface thermodynamics 
are obtained from 

d(S2cS)/A) = - s d T  - T d p  - O d E  (12) 

where s is the surface excess entropy per unit area. 
The conjugate density for E is 

From (12) it follows that,forfixed T, 

= (E)r - Bp(%L 
which becomes, in terms of more convenient variables, 

Equation (14) is a surface analogue of the standard Cp-Cv thermodynamic relation; it 
will prove to be important in determining relationships betwen critical exponents. Note 
that, for a magnetic (Ising) system, p + h,  the bulk external field, r-, m,, the surface 
excess magnetisation, and E -  hl,  the applied surface field. If the latter acts on the 
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surface layer (n  = 1) only, then @+ ml, the magnetisation in that layer, and (14) 
transcribes to 

-1  

h i  

which is somewhat easier to contemplate since ml is strictly local now. The LHS of (15) 
is simply the susceptibility 

where F(’) is the (magnetic) surface excess free energy. We could, of course, have chosen 
to differentiate with respect to temperature T. This would have yielded equivalent 
equations but these are less useful for subsequent purposes. 

2.2. Relationships between critical exponents 

Complete or critical wetting transitions are signalled by the growth of thick wetting films 
and the development of capillary-wave-like fluctuations in the depinning liquid-gas 
interface. Such fluctuations give rise to Ornstein-Zernike behaviour of the density- 
density correlation function in the edge of the film, i.e. 

for small wavenumbers Q. The transverse correlation length c11 = [-G2(t, t)/Go(t, t)I1/’ 
and the zeroth moment 

G(zi , 2 2 ;  Q )  - Go(zi, ~ 2 ) ( 1  + E f Q 2 ) > - ’  

GO(Zl,Z2) - P’(zl)Pf(z2)cf/pal, 2 1 , 2 2 - t  (17) 

2 1 7 2 2  - t (16) 

diverge as the film thickness t diverges at the appropriate transition (e.g. Tarazona and 
Evans 1982, Lipowsky 1985). Because the relevant fluctuations are capillary-wave-like, 
the analogue of the exponent r] is zero for all wetting transitions (Lipowsky 1984,1985, 
Dietrich 1988 and references therein) and the expansion (4) should be valid. 

2.2.1. Complete wetting from off-bulk coexistence. In the complete wetting regime the 
transition occurs as p + p i t  at fixed T > T,. The thickness of the liquid film and, hence, 
the adsorption diverge as 

r - Apt - 16pl-@~ (18a) 
where dp = psat - ,U and Ap = pI - pg is the difference in densities of the two coexisting 
bulk phases. The correlation length diverges as 

Ell - l6Pl-”ll (18b) 

Q$&/A - 16p12-”s. (18c) 

while the singular part of the surface excess grand potential vanishes as 

The exponents p,,  VI^ and a, are not independent. From the Gibbs adsorption equation 
(5a) it follows.that 

1 - CYS = -p, 

1 + p, = 2 q .  

while from (6)  and (17) it follows that 

These relationships are valid for all types of wall-fluid and fluid-fluid potentials. For 
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short-ranged (exponential or  finite-ranged) potentials the mean-field result is 
t - -In 16pl,sothatP, = 0, V I I  = ;andas = 1. Insertingthesevaluesintothehyperscaling 
relation 

2 - a, = ( d  - 1 ) ~ l I  (19c) 
it follows that the upper critical dimension d, = 3 (e.g. Dietrich 1988). (Hyperscaling 
for the surface problem asserts Q - ' Q & / A  - k B  T . )  Thus, ford S 3, the exponents are 
determined uniquely by (19 ) ,  e.g. 

= 2 / ( d  + 1).  

In d = 2 ,  /?, = i, vll = $and a, = 4. These results agree with those from exact solution 
of a solid-on-solid model in an external field (e.g. Abraham 1986 and references therein). 

The sum rules enable us to make some statements about the nature of correlation 
functions at complete wetting. Equations (17)  and ( 3 )  imply that the local susceptibility 
in the edge of the film diverges as 

x ( z )  - "5i 2 - t  (20) 
for all potential functions. For the special case of a hard wall, ( 9 )  makes rather specific 
predictions for correlation functions in complete drying, p -+ pLt. Equation (9b )  states 
that GO(z,  0) is equal to the density gradient ~ ' ( 2 ) .  Consider the situation where one 
particle is at the wall and the other is in the edge of the intruding gas film. Then p'( t )  
becomes equal to the density gradient of a free liquid-gas interface as t-  =. Capillary- 
wave arguments then predict p'( t )  - 5:' as 6p- 0+, where ljL is the width of the 
depinning interface, or the interfacial roughness: 

constant d > 3  

613 - d ) / 2  d < 3 .  
E L  - (In 51,)1'2 d = 3  (21)  

(constant d > 3  

1 
Using the exponents quoted above we predict for complete drying with short-ranged 
potentials 

d = 3  

d < 3  

in the limit t -+ m. 
Sum rule (9c)  shows that the local susceptibility at contact, x(O+), depends on the 

density of the bulk liquid, which is macroscopically far from the wall when the gas film 
intrudes in the limit 6,u -+ O+.  Equation ( 9 d )  asserts that the second transverse moment 
G,(O, 0) evaluated with both particles at the wall is proportional to the total surface 
tension awl of the wall-liquid interface. In the limit 6p + O', owl = a,, + a],, where a,, 
is the wall-gas gas tension. Thus G2(0, 0) depends on the tension, q,, of the liquid-gas 
interface that is a macroscopic distance from the wall. (A detailed analysis of this curious 
result was given in I.) In contrast the zeroth moment Go(O, 0) depends only on the 
derivative of the density at the wall, which is characteristic of the wall-gas interface in 
the complete drying limit. 

It is natural to enquire if these features of the correlation functions are specific to 
drying at a hard wall or whether they pertain, with minor alterations, to all complete 
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wetting or drying situations in systems with short-ranged potentials. Our explicit mean- 
field results for exponential potentials will shed light on this question 

2.2.2. Critical wetting at bulk coexistence. We suppose that a critical wetting transition 
can be induced at a fixed value of (p,T) on the bulk coexistence curve by increasing the 
strength E of the attractive part of the wall-fluid potential. Then for E < ~ ~ ( p ,  T )  
the wall-gas interface (8p = 0’) is partially wet by liquid a,, < owl + olg, whereas for 
E 3 ~ ~ ( p ,  T )  this interface is completely wet and ow, = owl + oIg. Alternatively we can 
envisage a critical drying transition induced by decreasing E ;  for E > ~ ~ ( p ,  T )  the wall- 
liquid interface (c5p = 0-) is partially wet (dried) by gas whereas for E s ~ ~ ( p ,  T )  
this interface is completely dry. Critical behaviour, analogous to (18) ,  will occur as 
E +  ~ ~ ( p ,  T ) .  We use the same notation for critical exponents but the values of these 
exponents will be different from those for the approach to complete wetting from off- 
bulk coexistence: 

r - Apt  - l 8 ~ l - P 5  (230) 

Ell - /8EI-’ll (23b) 

Qk&/A - I ~ E ~ ~ - @ S  (23c) 

with 8~ = E - E&, T ) .  The fundamental relationship between the critical exponents 
now follows from the thermodynamic relation (14). The LHS is -((a2Q(s)/A)/d~2)p, 
which has a ‘singular’ contribution 18&l-”~, while the second term on the RHS is the 
ratio of two diverging terms: from ( 6 ) ,  (17) and (23b),  (8 r /dp)E,T  - 16~1-*~Il whereas 
(a r/aE)p,T - / ~ E I - ( ~ + P ~ )  for E +  E ; .  For finite-rangedpotentialsP, = O(ln), V I ,  = 1 and 
as = 0, corresponding to a finite singular contribution to ( (d2Q(s) /A) /a~2)p ,T  (e.g. Sul- 
livan and Telo de Gama 1986) in mean-field approximation. Beyond mean-field theory 
it is feasible that as # 0. Then, assuming ( a @ / d ~ ) ~  (or further derivatives of Q(’)/A) are 
not less singular than ( d @ / a ~ ) ~  (or further derivatives of this quantity) it follows that 

-a, = -2(1 + p,) + 2V1, 

2 - a, = 2 9  - 2 p s .  

or 

(24) 
Clearly this is the analogue of the well known Rushbrooke exponent (in)equality for 
bulk systems. When a, < 0 the non-singular contribution to ( d @ / d ~ ) ~  and ( a @ / d ~ ) ~  
must be identical at 8~ = 0. In the vicinity of the transition 

Q(’ ) /A  = owl(&) + olg + Q$J,/A (25) 
and the (non-critical) wall-liquid tension, which is analytic in 8 ~ ,  gives a constant 
contribution to ((d’Q(S)/A)/d~2),3,. Note that (24) is obeyed by the mean-field results. 
Our present thermodynamic derivation of the exponent relation is more direct than 
previous derivations that were based on a scaling hypothesis for Q$;i, (e.g. Sullivan and 
Telo da Gama 1986, Schick 1989) or on an ansatz for Go(zl, z 2 )  (Henderson 1986). 
Inserting the mean-field exponents into the hyperscaling relation (19c) we obtain d, = 
3 once more. 

Combining (19c) and (24) we find 

P s  = ( 3  - d)+ d s 3. (26) 
But (21) shows that the interfacial roughness CL - E13-d)/2 fo rd  < 3. Thus EL diverges 
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with the same exponent as that of the film thickness t ,  at critical wetting in d < 3. This 
was also the case for complete wetting in d < 3, reflecting the fact that for both types of 
transition strong fluctuations of the interface lead to excursions that are of the same 
order as the film thickness, i.e. 

Unlike the complete wetting case we cannot determine the exponents uniquely from 
sum-rule and hyperscaling arguments because there are two relevant scaling fields-the 
chemical potential p and the wall field &-rather than the single field p appropriate in 
complete wetting. However, since 7 = 0, all critical exponents can be expressed in terms 
of a single independent exponent ul1, say (Schick 1989). The exact results for the square 
Ising lattice with a contact surface field hl (Abraham 1986), ps = 1, ull= 2 and a, = 0 
satisfy (24) and (26). 

Critical wetting is rather special in d = 3. If there is power-law growth of the cor- 
relation length (finite ull), (26) implies ps = 0, i.e. logarithmic growth of the film thick- 
ness. The magnitude of V I ;  is not determined but we would expect incorporation of 
fluctuations either to leave ull unrenormalised or to increase ul l  above the mean-field 
value (3 is the marginal dimension.) Then from hyperscaling, or from (24), as is either 
zero or negative. In the second case (( d 2s2(s)/A)/d E ' ) ~ ,  has a vanishing singular con- 
tribution at the transition-see (23c) and (25). Renormalisation-group (RG) calculations 
for effective interfacial Hamiltonians (e.g. Dietrich 1988) predict ull> 1 and, therefore, 
a, < 0 for short-ranged potentials in d = 3. We will comment on these predictions in Q 4. 

As emphasised earlier, this treatment is based on the assumption that the exponent 
~ 1 1  = 0 for all wetting transitions. It is instructive to enquire how exponent relations for 
critical wetting would be modified if 1111 # 0. We suppose that (ar /ap ) , ,T  - I & - ~ i l ,  with 
ylI, the analogue of the susceptibility exponent, related to the transverse correlation- 
length exponent via = yl(2 - q) .  Then the Cp-Cv relation implies, for finite vi, that 

- t. 

2 - as = q ( 2  - q)  - 2Bs 

q ( d  - 3 + q)  = -2Ps. 

rather than (24). Assuming hyperscaling remains valid we find 

Since in d = 3 we require ps 2 0 and ~112 1 (the mean-field result), the above relation 
implies s 0. But cannot be negative, so we conclude that thermodynamic con- 
siderations plus hyperscaling enforce the condition q =  0, in keeping with the general 
consensus concerning the nature of capillary-wave fluctuations (e.g. Dietrich 1988). 
Moreover, (3, is forced to be zero. If the correlation length diverges exponentially, the 
above argument is no longer applicable. Note that in d = 2 Abraham's (1986) explicit 
results for the Ising model require 

As first recognised by Henderson (1986) the sum rules make specific predictions for 
the behaviour of correlation functions as & + 0. The susceptibility in the edge of the 
film diverges as in (20), with the correlation-length exponent appropriate to critical 
wetting. More strikingly the local susceptibility also diverges for z near the wall. This 
becomes clear upon combining (10) and (3). If V,(z) has a finite (microscopic) range a ,  
then %(a) diverges as ( a r / d E ) p , T .  

It is natural to suppose that such a divergence inx(a) is associated with the divergence 
of Go(a, t), i.e. the integral in (3) is dominated by the contribution from z2  - t. A 
plausible form is 

This yields the correct divergence for %(a) and is consistent with the sum rule (10). 
Explicit density-functional results (see 9 3) confirm the factor of ~ ' ( z ) .  

= 0. 

Go(z, a)  - P ' ( Z ) W / W P , T  z - t. (27) 
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Using the exponents introduced above, (27) implies 

Go(t, U) - 18~1-l for all d (28) 

as 8 ~ +  0-. This result assumes that P, = 0 in d = 3. If P, # 0, as is expected for certain 
strong fluctuation regimes in d = 3, (28) will be modified. Critical wetting with short- 
ranged potentials is characterised by Go(t, a)  diverging with an (almost) universal critical 
exponent. Such behaviour should be constrasted with (22) for complete wetting. 

When both particles are close to the wall we must consider Go(a, a). This quantity is 
defined as Go(a, a) minus the delta function, i.e. Go(z ,  z )  = p2(z)ho(z ,  2)-see (lb). 
For critical wetting ( l l b )  and (25) together imply that Go(a, a )  acquires a ‘singular’ 
contribution 18~1 from the ‘critical’ interface. Such a contribution is non-vanishing at 
the transition in mean-field approximation (a, = 0)-see B 3.4. 

If a, < 0 any singular contribution to GO(a, a )  must vanish for finite-ranged V,(z)  
and we might expect Go(a, a) ,  with a - 0, to be the same for the ‘critical’ ( p  = pGt) and 
‘non-critical’ ( p  = &) interfaces at the transition. 

The second transverse moment G2(z1, z2 )  is also of interest. When both particles are 
in the edge of the film, (16) and (17) imply 

G2(Zl,Z2) - -Pt(z1)Pt(z2) f i i lPUlg z1,z2 - t. 
Asz, and z2 move out of the liquid-gas interface, G2 will decay. Any singular contribution 
can be estimated using the Ornstein-Zernike (OZ) relation, which defines a direct 
correlation function C as the inverse of G:  

Expanding C and G in powers of Q2, as in (4), it follows (e.g. Evans 1979) that 

G2(~1 ,z2 )  = - d Z 3  /-: d Z 4  GO(zl, Z4)C2(Z4r Z3)G0(Z3, z 2 )  (30) 

where C2(z1, z2 )  is the second transverse moment of the direct correlation function. 
Using (27) in (30) it is clear that G2(a, a) should acquire a divergent contribution from 
z3 and 2 4  in the edge of the film: 

G2(a,  a)  - -ulg(ar/aE):,T - l 8 ~ l - ~ ( ’ + P f )  (31) 

where the Triezenberg and Zwanzig (1972) formula (see also I) has been used to express 
the integral in terms of ulg. We are now in a position to examine the transverse correlation 
length 

f r  E [ - G ~ ( u ,  a) /GFg(a,  a)]”’ (32) 

corresponding to correlations in which both particles are close to the wall. It is important 
to recognise that this definition employs only the singular contribution (K I &  -“I) to 
Go(a, a) ,  which, as we have seen, may vanish at the transition. Inserting (31) into (32) 
and making use of the exponent relation (24), we find ljr - 51,. In other words the 
transverse correlation length for particles near the wall diverges in the same manner as 
that for particles located in the depinning liquid-gas interface; there is only one diverging 
correlation length. For complete drying at a hard wall we found that both G2(0, 0) and 
Go(O, 0) are finite at p = pZt.  There is no divergent 2fT in this case-see I. 
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3. Correlation functions from a mean-field free-energy functional 

The sum-rule analysis of the previous section made some rather general predictions 
concerning the behaviour of pairwise correlation functions for fluids undergoing wetting 
transitions. In order to test and to understand better these formal results, it is instructive 
to examine the correlation functions obtained for a specific model of a fluid near a wall. 
Here we consider a simple, mean-field density-functional theory of the inhomogeneous 
fluid in which explicit formulae can be calculated for transverse moments of G. As the 
present discussion is an extension to critical wetting transitions of the density-functional 
theory developed in I for complete wetting, we make much use of results presented in 
that paper. 

3.1. Specification of the free-energy functional and equations for G 

As in I we consider the grand potential functional 

Qv[p(r)l = - j drp(r)u(r) + Wl (33)  

with the intrinsic Helmholtz free energy given by 

Minimisation of Qv with respect to p ( r )  yields an integral equation for the equilibrium 
density profile: 

u(r) = ,U - V(r)  = p , , (p ( r ) )  + 1 dr’  p ( r ’ ) w 2 (  lr - r ’ l ) .  ( 3 5 )  

The approximation (34)  for %[p] has been widely used in studies of wetting phenomena 
and its limitations are well known (Sullivan and Telo da Gama 1986, Dietrich 1988). 
Equation (34) assumes that the free energy arising from repulsive interactions between 
fluid molecules can be treated in the local-density approximation: fh(p) is the Helmholtz 
free-energy density of a uniform hard-sphere fluid of density p. The second term in (34) 
treats attractive forces in mean-field fashion: w2(r) is the attractive part of the pairwise 
potential between two fluid molecules. Such a functional cannot describe oscillatory 
density profiles and it omits some of the effects of capillary-wave fluctuations. We will 
comment on this later. Finally, , u h ( p )  = dfh/dp is the chemical potential of the uniform 
hard-sphere fluid. 

Within the context of density-functional theory, G ( r l ,  r2) is obtained via (29), i.e. as 
the inverse of the direct correlation function C ( r , ,  r2). The latter is the second functional 
derivative 

evaluated at the equilibrium density. In the present model Cis very simple: 

where xh(P) = (pp dph/dp)-’ is the susceptibility of the uniform hard-sphere fluid. If, 
in addition, the attractive fluid-fluid potential is chosen to be of Yukawa type, 

(38)  
aA3 exp(-Ar) 

4nAr 
wz(r) = - 

where a = -$dr w2(r)  is the integrated strength and A-’ is the decay length, the 
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transverse Fourier transform can be performed, giving an explicit expression for 
C(zl, z2 ;  Q)-see I. (We specialise once more to a three-dimensional fluid in a potential 
V ( z )  where p(r)  = p(z).)  The oz equation (29) then yields an integral equation for 
G(zl, z2;  Q). In I it was shown that this equation can be converted into a second-order 
differential equation 

with the boundary conditions for x1 = 0 

and for x1 > 0 

Here x = Az and pw = p(O+) is the density of the fluid at contact with the wall; we assume 
V ( z )  is infinitely repulsive for z < 0. The function s is defined as 

It is important to recognise that (39) determines the pairwise correlation function of 
the Yukawa model fluid for any external (wall) potential-the dependence of s on V ( z )  
is implicit in the profile p(z) ,  Later we shall examine explicit solutions of (39) for different 
choices of V ( z )  but first we deduce some consequences of (39) for a general wetting 
transition. We suppose that, beyond a certain distance from the wall, which we will 
denote A, the density profile is essentially constant and equal to pI, the density of the 
liquid that coexists with the bulk gas at p = pLt.  The differential equation for the zeroth 
moment so(xl, x2) = s(xI, x2; 0) can then be approximated by 

where al is the dimensionless inverse bulk liquid correlation length (see I) 

Equation (41) predicts exponential increase of correlations with x2 increasing towards 
A t ,  the thickness of the liquid film. Setting z1 = t and ignoring the variation of X h  with z2 
it follows that 

s,(t, 2 2 )  - so(L A) exp[Aa,(z, - A)] t b Z 2 > A .  

When both particles lie in the edge of the film, so(t,  t )  - lji since (17) is valid within the 
density-functional approximation, but with non-vanishing density gradients (Tarazona 
and Evans 1982) at a transition. Thus the zeroth moment should exhibit the following 
decay 

so(t, 2 2 )  - e x p [ - h ( t  - 2 2 1 1  t b z z > A  (43) 
for both complete and critical wetting. The behaviour of s,(t, z 2 )  depends on the relative 
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strength of the singularities of 511 and t ,  which differs between complete and critical 
wetting. More specifically, in the light of the sum-rule analysis, we might expect G,(t, A) 
to be singular for critical wetting but finite for complete wetting. 

3.2. Wetting characteristics for exponential wall-fluid potentials 

We consider an external potential of the form 

z < o  
V( z )  = { 

- E exp(-A,z) Z > O  
(44) 

where E is the well depth and A,(>O) is the inverse decay length. In the special case A, = 
A ,  so that fluid-fluid and wall-fluid potentials have identical decay lengths, the density- 
functional theory reduces to that employed by Sullivan (1979, 1981) in his pioneering 
study of wetting transitions. With this choice the integral equation (35) for the profile 
can be converted to a differential equation, which is easily solved by quadrature. 
Sullivan showed that the fluid undergoes a continuous (critical) wetting transition at 
bulk coexistence, y = p i t ( T ) ,  when E is increased to EJT) satisfying 

aPl(T) = 2 E w ( T ) .  (45a) 

A critical drying transition occurs when E is decreased, at p = p.ls+at(T), to the critical 
value E ~ (  T )  satisfying 

= 2 E D ( T ) .  (45b) 

The wetting characteristics of the Sullivan model are well known (Sullivan 1979, 1981, 
Tarazona and Evans 1982). For complete wetting, E > EJT), the thickness of the liquid 
film diverges as 

At - -ac l  In / S , u  (46a) 

the transverse correlation length as 

and a, = 1. 

length of the bulk gas. At the critical wetting transition we find 
Equivalent results apply for complete drying with al replaced by ag, the correlation 

At - -a;l  In ISEI (47a) 

and 

as = 0 (47c) 

with equivalent results for the drying transition. The critical exponents have the appro- 
priate mean-field values given in § 2. Only second-order transitions occur in the Sullivan 
model; there is no first-order wetting transition. 

This situation changes dramatically when A, # A so that the potentials have different 
decay lengths. Numerical results by Tarazona and Evans (1983) and Teletzke et a1 (1983) 
showed that the wetting transition could become first-order when A, < A ,  i.e. when 
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the wall-fluid potential is longer-ranged. Hauge and Schick (1983) reached the same 
conclusion from a perturbative treatment of the same model. More significantly for our 
present purposes, Aukrust and Hauge (1985, 1987) (AH)+ considered the situation 
b = &/A > 1, where the wall-fluid potential is shorter-ranged, and found critical wetting 
transitions with non-universal, b-dependent correlation-length exponents, provided 
al < b < 2al. 

The film still thickens logarithmically, but with a different amplitude 

At - -(b - al)-’ In 16~1 (48a) 
whereas - / 6 ~ /  -’ii with 

Since vll> 1, in this regime the exponent relation (24) implies 

b - 2al 
as =- < 0. 

b - a i  

AH showed that b = 1 (the Sullivan case) corresponds to the tricritical line of the model. 
When b 3 2a,, but b > 1, the critical wetting transition reverts to the Sullivan type with 
characteristics given by (47). The location of the wetting transition cannot be determined 
exactly when b # 1. From a perturbative analysis AH find 

[b2 - af(T)]  2 
[l - af (T)]  (1 + b) 

-- - 2&w(T) (49) 

for al < b < 2a1, b > 1. This result connects smoothly to the Sullivan result (45a) at 
b =  1. 

AH point out that it is remarkable that a system in which all the relevant potentials 
are exponential should exhibit such a diversity of critical behaviour$. The fact that as is 
zero for certain regimes but negative for another has important repercussions for the 
behaviour of the pairwise correlation function near the wall, as we shall see in later 
sections. 

3.3. Correlation functions for the Sullivan and A H  models 

We are now in a position to list some explicit formulae for moments of G(rl, r2) for 
exponential wall-fluid potentials. In I we showed that for the Sullivan model a solution 
of (39a), with Q = 0, is p ’ ( x 2 ) / p ( x 2 ) .  This result follows because the Sullivan differential 
equation for p ’ ( x )  can be cast into the same form as (39a). The full solution for so(xl, x2) 
is 

t Our notation differs from that Of  AH. They useP for our ratio b a n d l  for the inverse bulk correlation length 
al. 
$ The exponents for complete wetting are the same for all b. 
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where O(x) is the Heaviside step function, p{v = dp/dx atx = 0’ and ph 
local susceptibility (see I) is 

ph(p(x)). The 

Both equations simplify considerably for a particle at the wall. Reverting to the original 
variables and correlation function we find 

and 

Equations (52) and (53) agree with the exact results ( 9 b )  and (9c)  for a hard wall ( E  = 
O), apart from a factor of xh(&)  in both equations. The origin of this factor was described 
in I;  it arises from the failure of a local-density approximation to treat properly infinite 
repulsion at the wall-the sum rule ( s a )  is not satisfied exactly in this theory. 

Using (30) another important formula was derived in I for the second moment 
G2(z1, z 2 ) .  This simplifies to 

+-  
( P w  - ‘I 

when both particles are at the wall. Note that the second moment C2 is a simple function 
for the Yukawa potential (38): 

(55) 

For the hard-wall case we showed that the RHS of (54) is pa (= pR(’)/A). In other words 
G2 obtained from the Sullivan model is consistent with the exact result ( 9 d ) ,  apart from 
an unimportant factor of x i (pw) .  

The above formulae all refer to the Sullivan model, b = 1. When b # 1, (39a)  remains 
valid but the equation for the derivative of the density profile no longer reduces to a 
second-order differential equation having the same form as (39a)  at Q = 0. This means 
that p’(x2)/p(x2) is not a solution and an explicit formula forso(xl, x2) cannot be derived. 
However, another more transparent integral equation for so@, 0) can be obtained from 
(39a) .  Setting so(x, 0 )  = f ( x ) x h ( p ( x ) )  dph/dx, a second (integral) relationship between 
the arbitrary functionf(x) and so(x, 0) follows from (39a) and the differential equation 
for dp,,/dX resulting from (35). Eliminatingfthen yields a new equation for so(x, 0) that 
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involves constants of integration. These can be evaluated using the various boundary 
conditions. We omit details and quote the final equation: 

where B is a constant given by 

x [mpw - b( l  + b ) ~ ] - ’ .  (56b)  
Although (56)  reduces to the correct Sullivan limit (52) forb  = 1, it is clear that, for 

any other value of b ,  so@, 0) is a much more complex function. Only when both particles 
are at the wall does (56 )  adopt a form similar to (52) ,  i.e. 

SO(0, 0 )  = A P W P , .  (57) 
We will make use of (56 )  and (57) is our discussion of critical wetting and the exponent 

That these explicit formulae for correlation functions are consistent with the exact 
sum-rule predictions for the hard wall suggests that it is meaningful to investigate 
their consequences for models undergoing wetting transitions. (The particular case of 
complete drying at a hard wall was analysed in I.) The exact sum rules of § 2.1 simplify 
for the special case of an exponential wall-fluid potential. Since 

V‘(2) = -A,V,(z) z > 0  

(see (44)), equation (2) for the density profile can be written as 

P ’ ( Z 1 )  = Go(z1, 0)  + S A V  i,: dZ2 VE(Z2)GO(Zl,Z2) 21 > o  

where the first term on the RHS arises from the hard-wall discontinuity, cf. (9b). This 
equation can then be used to reduce the RHS of (10) to a single integration 

= (&&-l[PWX(O+) - P b l .  (58b) 
Similarly the RHS of ( l l b )  can be reduced to an expression involving G o ( O ,  0) only: 

As before, the quantity Go(O,  0) is Go(O, 0) minus the delta function contribution-see 
(lb).  Note that for a hard wall (E = 0) the terms in square brackets in (58) and (59) 
vanish identically by virtue of (9). We do not expect the correlation functions obtained 
from the density-functional approximation to satisfy sum rules (58) and (59) identically; 
factors of xh(pw) will arise as in the hard-wall case. However, (58) and (59) require any 
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singular contributions to G,(t, 0) and G O ( O ,  0) obtained from our approximate theory to 
be consistent with the singularities in ( X / a  E ) ~ ,  and ((a 2S2(s)/A)/a E ~ ) ~ ,  respectively. 
In particular (59) requires? G i " g ( 0 , O )  - ]SEI Thus, these equations provide a useful 
check on the internal consistency of the density-functional results. 

3.4. Behaviour of the correlation functions at wetting transitions 

3.4.1. Complete wetting from off-bulk coexistence. Complete wetting and drying in the 
Sullivan model (b = 1) was analysed in I. The results can be summarised as follows. 
G(zl, z2;  Q) exhibits Ornstein-Zernike behaviour (16) when zl, z2  - t and 51, is given 
by (46b). The local susceptibility x(t), obtained from (51), diverges as given in (20) 
(Tarazona and Evans 1982), i.e. as p'(f)lSpl-' .  For complete wetting E > E,(T) and 
pw > pl( T ) ;  the density profile decreases monotonically with z .  The denominator in (52) 
and (53) is non-zero, so that both GO(t, 0) and ~ ( 0 ' )  remain finite at Sp = 0. These 
results are consistent with the exact sum-rule predictions for drying at a hard wall (0 2.1). 
That G,(t, 0) is finite is also consistent with (43) since, from (46), ljf exp(-halt) - 1 for 
complete wetting. Caution must be exercised, however, in employing (43) in this case. 
More careful analysis shows that (43) applies for z2  > A - t/2. When z + 0 there is no 
'singular' contribution to Go(z,  0) from the liquid-gas interface, as is evident from (52). 
When both particles are at the wall G O ( O ,  0) depends on purely local quantities ph and 
p,. At complete wetting these are characteristic of the wall-liquid interface and contain 
no information about the liquid-gas interface. 

The second moment G2(z1, z2)  is somewhat more difficult to analyse. In I an explicit 
equation was obtained for G2(z, 0) for the particular case of a hard wall and we showed 
that 

Taking the ratio of (60) and (52) we obtain a transverse correlation length that diverges 
as /6pl-1/2, i.e. in the same fashion as $-see (46b). The capillary-wave fluctuations do 
not manifest themselves in this way when z < t/2. Then there is no diverging transverse 
correlation length. We would expect the same consequences for any complete wetting 
or drying situation in the Sullivan model. Equation (54) implies that G2(0, 0) acquires a 
contribution from the depinning liquid-gas portion of p'(z) in the limit Sp -+ 0'. Use of 
the Triezenberg and Zwanzig (1972) formula for olg (see I) shows that this is afinite 
contribution - ~ ~ ( p , ) p ~ a ~ ~ p / ( p ~  - 2 a - l ~ ) ~ .  

Complete wetting when b # 1 is essentially the same as that forb = 1. As mentioned 
earlier the critical exponents are the same and the film thickens as in (46a) if al < b, or 
a s k  - -b-l In ISpJ ifal > b. Ineithercaseso(t, 0)in (43) remains finite. Thisisconfirmed 
by further analysis, which shows that there is no contribution to B, in (56a), from the 
liquid-gas interface and that the second term in this equation is non-singular. 

3.4.2. Critical wetting at bulk coexistence. We focus on critical wetting E + E ;  ( T ) ,  where 
the bulk is gas at Sp = 0'. The Sullivan model (b = 1) is exceptional in that for E S E,( T )  
the density profile, at coexistence, is a portion of the free liquid-gas interface (Sullivan 
t Equation (59) justifies, for the special case of exponential wall potentials, the argument, given in § 2.2, that 
G;fg(a, a) - /a&l-? 
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1979,1981). At the transitionp, = pi( T )  and p\: = 0. From the equation for the density 
profile and the boundary condition at the wall, it is straightforward to show that 

2al S E  (%I"=,+ - 1 - al SE-+ 0- -- 

for the (critical) wall-gas interface; S E  = E - E, (T) .  It is instructive to consider also the 
(non-critical) wall-liquid interface (Sp = Ow), for which 

-2a1Se 
S E - O - .  -- (%I:==,+ - 1 + al 

Thus pa  is negative for wall-gas but positive for wall-liquid interfaces. (Note that 
0 < al < 1.) When S E  > 0 the wall-gas interface is wet by liquid and (61b) applies to both 
the critical and non-critical interfaces. There is a discontinuous jump in (dp\:/aE)T on 
the critical interface at the transition. This gives rise, via (52) ,  and some algebra, to an 
equivalent discontinuity in G,(O,  0), i.e. 

and 

G O ( 0 , O ) '  = X3Pw) S E +  0 -  (62b) 
BaAp'w 

with (62b) applying to both interfaces at S E  = O f .  The difference between these results 
can be identified with the singular contribution: 

2a 1 Bah P 'w G p ( 0 ,  0 )  = G = , ( O ,  0 ) g  - Go(0,O)' = XiXPw) 1 - af 

The sum rule (59)  would identify this difference with 

S E -  0 - .  (63)  

1 
since the other terms in (59)  are identical on both interfaces at S E  = 0. Sullivan (1981) 
has investigated the dependence of the surface tension on S E .  Using the results in the 
appendix to his paper we have evaluated D and find this quantity is identical to the RHS 
of (63) ,  apart from the expected factor of xt(p,). That the two routes to G i " g ( 0 , O )  give 
consistent results attests to the internal consistency of the theory, as remarked in 0 3.3. 

We conclude that G=,(O, 0)s has a finite, singular contribution at the transition, 
consistent with exponent as = 0. The second moment G2(0, 0), on the other hand, now 
diverges as / 6 ~ l - ~ .  This follows directly from the explicit formula (54).  The transverse 
correlation length at the wall (defined by (32) with a = 0), - / B E /  - l ,  which is the same 
divergence as that of 511 in (47b).  More precisely, from (63) ,  (54) ,  (476) and the definition 
(32) ,  we find E r  = a,gi~. 
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From (51) we find (Tarazona and Evans 1982) that ~ ( t )  again diverges as predicted 
by (20), i.e. as p'(t) 1 6 ~ ) - ~ .  The susceptibility at the wallX(0') has, from (53), a singular 
contribution 

with pw - p b +  Ap at the transition. (x(O+) is finite on the non-critical interface since 
pw - p b  vanishes as a&.) Sum rule (5%) identifies xsing(Ot) with the singular part of 
~ A p ; l ( d T / d s ) , ~ , ~ .  This latter quantity can be evaluated explicitly in the Sullivan model. 
Using methods given in the appendix of Tarazona and Evans (1982), we find 

which, apart from the factor of xh(pu), reduces to (64) at the transition, again attesting 
to the internal consistency of the theory. 

Equation (52) implies that G,(t, 0) - p'( t )  / 6 ~ ) - ' ,  which is consistent with the pre- 
dictions (27) and (28), taking a = 0. The same exponent (- 1) follows by inserting the 
critical wetting characteristics (47) into (43). In this case A is a microscopic distance, 
which can be taken to be zero, at the transition. Critical wetting in the Sullivan model is 
characterised by capillary-wave-like fluctuations that extend all the way to the wall. 

A similar scenario emerges when b # 1. The details are sufficiently different to 
warrant separate discussion, however. Now the density profile at the transition is no 
longer a portion of the free interface and p: # 0. The constant B in (56) remains finite 
at the transition; the denominator in (56b) does not vanish when E + E,( TI-see (49). 

Direct analysis of the integral equation (56) is not straightforward. It is more con- 
venient to return first to (43), which remains valid for b # 1. The exponent vIl that 
describes the divergence of ElI and the amplitude oft depend on b ,  however. If we insert 
the appropriate values, as given in § 3.2, (43) yields 

G,(t, A) - 1S~l-l (66) 

for all b for which critical wetting occurs. This result is consistent with (28). Moreover 
we expect it to apply for A = 0, consistent with the divergence predicted by sum rule 
(58a); Ps = 0 for all relevant b. The argument that leads to (43) can be extended to give 

G;"g(A, A) - Ef exp[-2Aa,(t - A)]. (67) 

Setting A = 0 and inserting the wetting characteristics we obtain 

which is consistent with the requirement G Z " g ( 0 , O )  - I ~ E I - ~ S .  If we shift attention to 
(56) and (57) and recall that at contact the density profile and its derivative are the same 
on both the critical and non-critical interfaces, it follows that B must also be the same 
when the singular contribution to s,(O, 0) vanishes at the transition (as < 0) but should 
be different when the singular contribution is non-vanishing (as = 0). Any singular term 
must arise from the integral in (56b). But it is easy to see that the singular contribution 
to the integral is proportional to G,(O, 0), so B does indeed exhibit the correct behaviour. 
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There is no explicit formula for the second moment when b # 1 but the Ornstein- 
Zernike relation (30) combined with (66) gives, consistent with (311, 

G2(0, 0) - I ~ E I - ~  (69) 
for all relevant b. Although G2(0, 0) diverges more slowly than G2( t ,  t )  - I ~ E / - ~ ’ I I ,  with 

1 / 1 1  3 1, the transverse correlation length E r ,  obtained from the ratio of (69) and (68) still 
diverges as 51 - I ~ E $ ~ I I .  

4. Relationships between gli and t for critical wetting in three dimensions 

Critical wetting in d = 3 with short-ranged potentials has received much attention 
recently (e.g. Dietrich 1988). The application of RG methods to effective interfacial 
Hamiltonians (Lipowsky et a1 1983), Brezin et a1 1983, Fisher and Huse 1985) leads 
to predictions of non-universal critical exponents that depend on the dimensionless 
parameter w = (4n/3qg5~)-’, where &is the bulk correlation length of the phase that is 
preferentially adsorbed. Such effective Hamiltonians consider the displacement of the 
liquid-gas edge of the wetting film in a ‘pinning potential’ that is identified with the mean- 
field wall-fluid interfacial tension; all fluctuations other than the capillary-wave-like 
fluctuations of the depinning interface are averaged out. In d = 2, exact solution of the 
interfacial Hamiltonian yields the exact Ising model results quoted earlier. In d = 3, 
Monte Carlo results for the same effective Hamiltonian (Gompper and Krolll988) are 
in agreement with the RG predictions, whereas extensive simulations (Binder et a1 1986, 
Binder and Landau 1988) of an Ising model with a contact surface field appear to yield 
only the mean-field value 1 / 1 1  = 1 for a situation where w is such that RG theory would 
predict substantial renormalisation, v~ l -  6. Various explanations of the discrepancy 
between the results from the Ising simulations and those from study of the interfacial 
Hamiltonian have been put forward (Binder and Landau 1988, Dietrich 1988, Halpin- 
Healy and Brezin 1987, Mon et a1 1988, Halpin-Healy 1989), none of which we find 
totally convincing. Given this background it is important to enquire whether the RG 
results can be derived by methods appropriate to a full many-body Hamiltonian descrip- 
tion of a continuum fluid adsorbed at a wall. Henderson (1987b) has made a promising 
step towards this end using sum-rule arguments and making certain assumptions for the 
effects of capillary-wave fluctuations. Here we have the somewhat less ambitious aim 
of rederiving the RG relationships between the thickness t of the wetting film and the 
transverse correlation length using results from 0 2. 

We begin by recalling that naive scaling analysis for critical wetting is problematic in 
d = 3. This follows as a consequence of the exponent relation (26) and from the fact that 
RG theory predicts exponential growth of 61,   VI^ = =) for w 2 2. A careful treatment of 
scaling (Parry and Evans 1989) implies the relationship 

Ell - exp(ct) (70a) 

(70b) 

where c is a constant, which implies, in turn 

- (In ~ 1 , ) ’ ’ ~  - t’/*. 

While the second of these is obeyed by the RG results for all w ,  the first is obeyed exactly 
only if w < 3. For w > 4 there are logarithmic factors (see below) present in the RG 
results. In order to investigate the origin of these terms, which constitute corrections to 
the scaling prediction, we make use of the analogue of the C,-C, thermodynamic 
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relation (14). Assuming hyperscaling is valid at the upper critical dimension, which is 
known to be correct within the RG analysis, we have, for d = 3 ,  Q&/A - 511'. Then, 
since (dr/dp)e,T - E#, equation (14) implies 

where Kis some (unknown) constant and E refers, as usual, to either the surface field or 
the temperature. Setting 

can be re-expressed as 

dY - = -y2(&) + K 
dE 

In the light of the RG and scaling results we suppose that 

where A ,  n ,  + and f l  are constants, f l  to be identified later with exponent P,. It is then 
straightforward to determine t ( ~ )  from (72) and show that 

in the limit 8~ 4 0. Then 

511 = A ( d ~ ) - ( j + ~ ) / ~  exp(4K'/2t) for all n ,  f l  > o 
in the same limit. This last result can be expressed as 

511 (In 511) -(8+ 11/48 cc exp(W2t )  g > 0  (75) 

since, from (73) ,  In 511 - ( & - p  at leading order. Equation (75) is the main result of this 
section and we now compare its predictions with the RG results of Fisher and Huse 
(1985), which are summarised below: 

P s  = O(W VI1 = (1 - w)-1 Ell - exp[t(l + 2w)- ']  w s t  

P s  = O(l4 VI1 = (V2 - 

EII(In 51,)-1/8 - e~p[t(8w)- ' /~]  ! , < w < 2  

P s  = 2  Ell - exp[C'(b&) -2 1 55,,P4 - exp(d4) w = 2  

Ell)-3/s - e~p[t(8w)- ' /~]  w > 2  
P s  = 1 511 - exp{(CG&)-l[ln(CG&)-l + lnln(C&)-' + 0(1)]> 

(76) 
where Cis  an w-independent constant and C' is a constant. 
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Comparison of (74) and (76) suggests that the relevant values of b (  =PS) are 0 , l  and 
2, so that our present thermodynamic argument predicts (70a) for Ps = 0 and 

~ ~ ~ ( l n  ,!l,)-l/z - exp(constant x t )  P s  = 1 (77a) 

51l(ln ~ i ~ ) - 3 / s  - exp(constant x t) ps = 2 .  (77b) 

or 

These results are very similar to the explicit RG results (76) but, in each case, there is a 
discrepancy of a factor (In @"S. This observation becomes even more puzzling when 
we recall that the RG treatment of Lipowsky eta1 (1983) yeildsprecisely (77a) for Ps = 1. 
More specifically Lipowsky et a1 found 

P s  = O(ln> VI/  = (1 - w)-1 Ell - exp[t(l + 2w)-'] w < l  

Ps = 1 Ell - exp(constant x 6c-l) (78) 
511 (In 511) -I/* - exp(t x constant) c c , > l  

in a theory based on a cruder renormalised effective potential, i.e. one that provides a 
less realistic description of a repulsive wall. 

For the case 6 = Ps = O(1n) equation (71) has the simple solution (70a) with 
511 - (se)-. and the exponent n (1~11) is undetermined. Thus, the thermodynamic argu- 
ment recovers the scaling result, which is in agreement with both RG analyses. That vi1 is 
undetermined within the thermodynamic and scaling treatments is a direct consequence 
of (26). 

Returning to the situation where Ps 3 1 we are forced to conclude that, if (71) gives 
a complete description of the singularities, Lipowsky's RG analysis is the one that gives 
the correct relationship between 511 and t. This is contrary to the 'accepted wisdom'. On 
the other hand, corrections to hyperscaling would, presumably, change our thermo- 
dynamic analysis, alter (71) and provide the factor of (In 51~) "~  that would bring our 
results into agreement with those of Fisher and Huse (1985), i.e. (76). The origin of 
any such correction terms remains obscure, however, and we shall see in $ 5  that 
discrepancies of this sort also arise in alternative approaches to the problem. 

The analysis of this section demonstrates that as well as yielding the fundamental 
exponent relationship (24) the thermodynamic argument is capable of accounting for 
remarkable, non-trivial relations between 511 and twhich supersede those from the scaling 
ansatz. Finally, we note that the solution (75) is unaffected by allowing @ to diverge as 
In 8 ~ .  

5. Critical exponents for critical wetting via unfreezing of capillary-wave fluctuations on 
a mean-field profile 

In this section we present the results of an analysis that has the same aim as that described 
in 0 4 but which makes use of (13), or equivalently, the sum rule ( l la ) ,  and an explicit 
model for the density profile p(z) near the wall. For finite-ranged wall potentials (13) 
implies 

where a is a microscopic distance. Clearly any singular behaviour in derivatives with 
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respect to E of Qcs) is reflected in derivatives of p(a). We assume that, in general, the 
profile near the wall can be expressed as a short-ranged, unrenormalised part psr(z), 
associated with (aa,,/a~),~, ,in (25), plus a contribution p ( z )  arising from the unfreezing 
of the capillary-wave-like fluctuations on a bare profile &(z)  that corresponds to the 
mean-field solution for a liquid-gas profile whose dividing surface is located near the 
edge of the wetting film at z - t. For a fluid in which the intermolecular potential is short- 
ranged, the tails of the (mean-field) density profile decay exponentially towards their 
constant, bulk values and the profile takes the form 

where ci and 6 are constants. In the particular case of the Yukawa fluid, the bulk liquid 
correlation length 5-b = (Aa1)-', with al given by (42). The fluctuations are unfrozen on 
the bare profile according to the procedure of Percus (1981), as adopted by Henderson 
(1987b). The renormalised profile is given by 

pMF(z - t )  = -ci exp[(z - t)/&,] + 6 exp[2(z - [)/&,I + . . . z e t  (80) 

p ( z )  = (2n5-3-1'2 dY PM& - t - Y) exp(-y2/25-'> (81) 

where EL is the interfacial roughness introduced in (21). Equation (81) is an extension 
to films of the standard unfreezing procedure used for liquid-gas interfaces in the 
presence of a gravitational field, where it leads to the well known error-function profile, 
e.g. Bedeaux and Weeks (1985). Henderson (1987b) provides a careful discussion of the 
assumptions underlying (81) in the present context?. Combining (80) and (81) we obtain 
for z close to the wall 

p ( z )  = -6 exp(z/ij,,)Z(E;') + 6 exp(2z/&J~(26,') + . . . (82) 

(83) 

with 

Z(p) = (2x5-21) -U2 loffi dxexp(-px) exp[-(x - t)2/25:]. 

For d s 35-, diverges as t diverges (at the wetting transition) and it is evident that the 
form of p ( z )  will depend sensitively on the relative magnitudes of EL and t ,  which depend, 
in turn, on the transverse correlation length E , , .  From the limiting behaviour of the error 
function it follows that 

P E  < t  (84a) 

In d = 3, the standard capillary-wave Hamiltonian yields (Buff et ai 1965, Evans 1979, 
Bedeaux and Weeks 1985) 

t The exponential in (81) takes into account Gaussian smearing about the mean field profile. In principle one 
should also include a term exp U ( y ,  t )  that accounts for wall-fluid and fluid-fluid contributions to the mean- 
field interfacial free energy. For short-ranged forces we can take 

1: otherwise 

y < - t  

U =  constant - t < y  < -t + a 

where a is a microscopic length. Including such a U alters the amplitude of p ( z )  but not the form of the 
singularity. 
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when the cut-off for transverse wavenumbers Q,,, = E ; ' .  For sufficiently small w ,  
corresponding to a very stiff interface, we might suppose that the roughness is such that 
25; < Ebt.  Then both Z(E;l) and Z(2E;') can be approximated according to (84a). More- 
over we expect (70a) to be valid so that t = C l E b  ln(El,/&,) with c1 now an o-dependent 
constant. Using (85) the leading term in (82) yields 

P ( z )  = - d  exp(z/Eh) exp[(w - c l )  ln(E11/Eb)l < c1/4 (86) 
for the profile near the wall. 

is non-singular we find 
We now use (79), with (25) and (23a), to equate singular contributions. Since &a) 

& - a ,  - q - c l  

VI1 = (2 + 0 - c1)-1. 

which implies the exponent relationship 1 - a, = vl,(cl - w).  Then as can be eliminated 
using hyperscaling: 2 - a, = 2~11. We obtain 

As expected, our argument is not sufficient to determine vll explicitly. However, it does 
provide a powerful consistency check on the RG results. The small-w regime corresponds 
to the first of equations (76), so we assumec, = 1 + 2w. Then (87) yields V ~ I  = (1 - @)-I ,  

which is identical to the RG result for the exponent. Moreover, with this choice of c1 the 
condition 2g: < &t requires (0 < 4, which is precisely the RG requirement for this 
regime. If this requirement is met, the terms in Z(2E;'), Z(3Ei1), etc., in (82) are of 
higher order than Z(E;') and can be neglected. 

For intermediate values of w it is feasible that 6; < &,t < 2Ei.  Then Z(E;') is given 
by (84a) but Z(2Eb') must be approximated by (84b). The calculation proceeds as 
previouslywitht = requires2w < c2 < 4 0 .  
Under these circumstances the terms in Z(2E;'), Z(3Ei1), etc., are again of higher order 
than Z(E;') and we obtain (87) for q, with c1 replaced by c2. The RG result (76) for 
intermediate w is 

(87) 

ln(El1/Eb) so that the conditionontand 

= (8w) 1'2 Eh[ln(El//Eb) - In ln(ElI/5'b)] 
If we assume c2 = ( S W ) " ~ ,  equation (87) yields vi1 = (d2 - in agreement with 
the RG exponent, and the condition becomes 2 < w < 2, which is the same as the RG 
requirement. In this case the procedure of equating leading singular contributions cannot 
determine the coefficient of any In In term that might be present. Note that to leading 
order (87) implies 

= ( 2  + 0 - l/vll)Eh 1n(611/Eb) w < 2. (88) 
The calculation can be extended to less stiff interfaces where w is large and 

E: > Ebt. Then all the terms in (82) must be approximated using (846). If we take 

with q a constant, as is suggested by the analysis of § 4, and allow for exponential growth 
of correlations, SZ&,/A - Er2, then (79), which now has the form 

= C36b[1n(61J/Eb) - In 1n(611/Eb)l 

can be solved for c3 and q. (Now all the terms in (82) are O(6;')  and we are forced to 
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make the assumption that the sum is a finite multiple of the first term.) We find 
c3 = (8~)" '  and q = (3fi + 2) /8b ,  where /.? is the exponent that characterises the E- 

dependence of &$--see (73). Choosing B(=BS) = 1 or 2, as in D 4, we obtain 

The requirement E: > ljbt is equivalent to w > c3/2, i.e. w > 2. Given that Fisher and 
Huse's (1985) RG results (76) assign ps = 1 to the regime o > 2, it is natural to suppose 
that (89a) is the appropriate result to compare with RG theory. Our present theory yields 
the same coefficient (8w)-'/* in the exponential; when 511 is exponentially diverging, 
equating leading singularities is sufficient to determine this coefficient. Equation (89a) 
exhibits a discrepancy with (76) of a factor (In Furthermore this result differs from 
that of (77a) based on the Cp-C, route. We do not have a convincing explanation for 
the discrepancies, other than to note that there might be problems with the convergence 
of (82). 

It is instructive to examine the renormalisation when the wall-fluid potential is 
exponentially decaying as in (44). Then the sum rule (13) becomes, upon integrating by 
parts, 

The contact density p(0') can be considered as the sum of a short-ranged part, p,,(O+), 
and a renormalised part given, as previously, by (82). However, the integral cannot be 
ignored. Using (81) and approximating PbF(z - t) by - A p a ( z  - t ) ,  the integral is 
proportional to I(&) so that 

+ dZ(AV) ] .  

We are now in a position to return to the Yukawa fluid that was treated earlier in mean- 
field approximation. Then l j ; '  = Aal and AV = Ab, where al and b are the dimensionless 
quantities defined in § 3.2. Recall that the interesting case is when a l  < b < 2a1, since 
then the mean-field exponents for critical wetting are explicitly dependent upon b and 
al--see (48). It is clear that we can carry through the previous calculation but now the 
boundaries between the different fluctuation regimes should depend on the magnitude 
of A&:. If AvE: < t then both f ( l j b ' )  and I(&) can be obtained from (84a). Assuming 
the former dominates, equating singular contributions in (90) again yields (87). Hauge 
and Olaussen (1985) extended the RG calculation of Brezin et a1 (1983) to a model 
Hamiltonian that included a term in exp(-A,t). From their paper one can show 
that Aalt = c1 In gll with c1 = 2al/b + bw/al, provided w is less than a critical value 
U, = 2 ( ~ z ~ / b ) ~ .  Using their result for c1 in (87) we find 

= Y I ~ ( w  = 0)/(1 - ~ b / 2 ~ l )  w < CO, (91) 

where 

is the mean-field result (48b). Since al < b < 2a,, w, is restricted to the range t < w, < 2. 
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This result for the renormalised exponent is identical to that obtained by Hauge and 
Olaussen (1985). Moreover the condition A& < t ,  which corresponds to 2bw < clal, is 
identical to the condition U < w,, so we conclude that the present procedure is com- 
pletely consistent with the RG treatment in this regime. With the above value for c1 the 
terms in I(&),  Z(25;'), etc, are of higher order than I(&').  Note that when b = 2 4 ,  c1 
reduces to 1 + 20, (91)  becomes vll = ( 1  - w)-' and U), = &, so that we recover the 
earlier results for wall potentials of strictly finite range. 

Hauge and Olaussen (1985) argue that for 2 > w > w, the second regime in (76) will 
pertain and, by implication, so will the results for w should not 
depend on al and b for w > o,-see also Dietrich (1988). This conclusion is consistent 
with the present treatment. The condition E;' Et < t < A& is equivalent to 2 > w > w, 
if the RG result t - ( 8 ~ ) ~ ' ~  In Ell is assumed. Z(E;l) remains the leading-order term in this 
regime. 

Perhaps it is appropriate to emphasise (although it must be abundantly clear!) that 
our present procedure is not capable of determining explicit results for critical exponents 
in d = 3. The situation is markedly different ford < 3 where the fluctuations are stronger. 
Here we do obtain explicit exponents for critical wetting. 

The procedure for unfreezing capillary-wave like fluctuations is not restricted to d = 
3;  equations (81) to (84) also apply for d < 3. In these lower dimensions EL - t (see 
§ 2.2), so that (84b) is the only relevant limit and p ( a )  E ; ' ,  Equating singular con- 
tributions in (79) gives a new exponent relation 

2. In other words 

1 - a, = ps d < 3  (92) 

which, combined with the other relations (24) and (26) ,  yields the explicit result 

= 2/(3d - 5 )  d < 3  (93)  

from which all the other critical exponents can be determined. For d = 2 we find  VI^ = 2 ,  
p, = 1, a, = 0, which are the exact results quoted earlier. This gives us some confidence 
that summing the terms in (82) ,  each of which is proportional to 5;' , does not introduce 
additional singularities. It is interesting that as = 4(d - 2)/(3d - 5 )  is positive for 
2 < d < 3. This implies that Go(a, a )  diuerges in these dimensions. 

Note that if (93)  were to remain valid in d = 3 it would predict the incorrect result 
V ~ I  = 2.  However, as we have seen above, is no longer proportional to t in d = 3 
and the fluctuations manifest themselves in a very different fashion in this borderline 
dimension. The variation of vll with dimension is a subtle matter that will be discussed 
elsewhere, when we make contact with the work of Kroll and Lipowsky (1982), who 
derived a formula equivalent to (93) using a very different procedure based on a field- 
theoretic treatment of domain wall pinning, and with the results of Lipowsky and 
Fisher (1987), who used a functional renormalisation-group treatment for an effective 
Hamiltonian to connect behaviour in d = 3 to that in d < 3. The numerical results of 
Lipowsky and Fisher are fitted by a formula that is quite different from (93).  An 
explanation of the difference will be given in a forthcoming paper. 

Before ending this section we note that our procedure for obtaining critical exponents 
or relationships between the various critical lengths differs from that of Henderson 
(1987b). Although p ( a )  is calculated from the same formulae (82)-(85), Henderson's 
subsequent analysis of the critical wetting transition makes several assumptions in 
addition to those described here. We believe that these are not fully justified and that 
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Table 1. Singular contributions to the transverse moments of the density-density correlation 
function G and the local susceptibility ~ ( z )  at the two types of wetting transition. The tilde 
indicates that delta-function contributions are omitted-see text. The thickness of the 
wetting film, t ,  and the transverse correlation length, Ell, diverge at the transition with critical 
exponents PI and q, respectively; a is a microscopic distance. All unimportant factors of 
proportionality have been suppressed in this table. 

Complete Critical 

our present approach is more systematic?. It is clear that a simple unfreezing of the 
capillary-wave fluctuations on a mean-field profile leads to relations between Ell and t 
that are consistent with the thermodynamic treatment of § 4 and with the RG results. The 
origin of the w-dependence of the exponents and the amplitudes in d = 3 is transparent in 
this formulation; it is via the roughness El. In the purely thermodynamic treatment w 
does not enter directly; the w-dependence is contained in the constants of proportionality 
appearing in (71). 

6 .  Discussion 

In table 1 we summarise our main results for the singular behaviour of the transverse 
moments of G at wetting transitions. The explicit density-functional results of § 3 confirm 
the predictions extracted from the sum-rule analysis; they are completely consistent with 
the results in table 1, provided mean-field exponents are invoked and the interfacial 
roughness is ignored, i.e. EL is set equal to a microscopic length. It is likely that a more 
sophisticated, non-local density-functional treatment of repulsive forces would satisfy 
the various sum rules exactly, but still with mean-field exponents, thereby removing the 
extraneous factors of xh(pw)-see I. Incorporating capillary-wave fluctuations into a 
density-functional approach so that p'( t )  vanishes appropriately as t + x i s  difficult (e.g. 
Evans 1989). Nevertheless we expect the form of many of the results in 8 3 to remain 
valid beyond mean-field approximation. 

Although complete and critical wetting have many features in common it is clear 
from table 1 that correlation functions do differ significantly between the two types 
of transition. Singular behaviour, arising from the fluctuations, manifests itself more 
dramatically in critical wetting. This is a direct consequence of the result E r  - El,; 
fluctuations extend all the way to the wall in critical wetting whereas they are modulated 
in a rather complex fashion in the case of complete wetting, for which there is no 
divergent transverse correlation length when both particles are near the wall. It is 
important to recognise that a divergent Gz(a, a)  does not imply a divergent (unphysical) 
i. Henderson does not attempt to derive exponents ford < 3 and he cannot describe the w > 2 regime in d = 
3; however, he does obtain explicit exponents for w < 2. 
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surface tension. Careful analysis of (7), using (2), along with the explicit mean-field 
treatment, shows that o remains finite at critical wetting. 

One can ask how Q" varies with bp and 8&, i.e. how the transverse correlation length 
at the wall depends on the approach to the wetting transition. This is conveniently 
tackled by means of scaling arguments. From the definition (32), using the relations 
Gz(a, a) - (at/ae):,, and G's;lng(a, a )  - ( a 2 Q $ ~ g / ~ ~ 2 ) , , T  and a scalingansatz (see Parry 
and Evans 1989) for sl$TJg it is straightforward to show that 

(Eil"<&b w2 = 6 i W P E i )  d = 3  (94a) 

where 
the corresponding result is 

= E / I ( ~ E ;  bp = 0) and t i s  a suitable scalingfunction: z(0) = constant. Ford < 3 

( Q " ( S p ,  d&))2 = b ~ - ~ ' I I f ( b p 6 & - ~ )  d < 3  (94b) 

with A = (d + 1)vll/2 and ianother scalingfunction. The most interesting result emerges 
when we set 6~ = 0 and take the limit bp + 0. Then 

Thus (95) predicts that if we follow a path in figure 1 at fixed temperature T = T,, the 
correlation length at the wall will diverge with the same exponent as that which describes 
the divergence of Ell in complete wetting from off-bulk coexistence at T > T,. Such 
behaviour is a further manifestation of the fact that fluctuations extend all the way to 
the wall in a critical wetting situation; 

Is there a simple approximation to G that will account for the various singularities 
that are encountered at both types of wetting transition for systems with short-ranged 
forces? Henderson invoked a single-eigenfunction ansatz for the singular or capillary- 
wave contribution at small wavenumbers Q: 

- 511 on this path as well as on path (1). 

Here p ( z )  is, as in 0 5 ,  a portion of the 'free' liquid-gas profile whose dividing surface 
lies close to z = t; w andf(z) are damping factors. The form of (96) is suggested by the 
corresponding result for the liquid-gas interface in a gravitational field. There w = 
/3mgAp (Wertheim 1976, Evans 1979). When z1 - z 2  - t, (96) must reduce to the 
Ornstein-Zernike result (16) and (17). Since in the edge of the film the density profile 
is that of the detaching liquid-gas interface, p'( t )  + p ' ( t )  as t +  a, and we can make the 
identification 

and 

f(t) = 1 t+  (97b) 
for both types of transition. Henderson argues that f ( z )  should be a smoothly varying 
function that is unity for z greater than a microscopic distance but we will reconsider this 
function below. 

Rather than following Henderson's approach, which uses (96) as the basis for a 
theory of criticality, we first ask whether (96) is consistent with our results in table 1 and 
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then whether this ansatz, with the prescription for P(z)  presented in 0 5 ,  does predict the 
correct critical exponents. The Ornstein-Zernike nature of (96) implies that fluctuations 
extend all the way to the wall; there is only one diverging correlation length 511. Conse- 
quently the formula is not appropriate for complete wetting and for this case it is 
necessary to go to a more sophisticated two-eigenfunction approximation to obtain a 
proper description of correlationst-see I. The formula is clearly more appropriate for 
critical wetting so we concentrate on this case here. When one particle is near the wall 
and the other is in the edge of the film G6w(t, a) should reproduce (27), i.e. 

If both particles are at the wall we require 

GEw(u, a) = ( P ' ( ~ ) f ( a ) ) ~ w - ~  - I ~ E / - " s  
which, using (97a) and (98), leads either to the exponent relation (24) or to (71) in the 
case of d = 3. The second moment 

and (31) is automatically satisfied. Thus, provided (98) is valid, Gcw will account for the 
singularities at critical wetting. 

We focus attention first on the mean-field case where there is no renormalisation of 
PMF(z - t). From (80) we find for the Yukawa fluid 

PhF(a) - -exp[dal(a - t ) ]  + 
As the film thickness t diverges logarithmically, with an amplitude that depends on the 
decay length of the exponential wall-fluid potential-see (47a) and (4th)-the tail of 
the liquid-gas profile vanishes as 

as t +  w. Inserting this result in (98) implies that 511 should diverge with the exponent 
vi1 = 1 or b/2(b - aJ. But these are precisely the values obtained earlier from explicit 
calculations. Thus, provided f(a) is a constant, Gcw does account for the singularities 
obtained in the detailed mean-field treatment. 

Beyond mean-field theory, it is necessary to make some further ansatz regarding the 
damping functionf(z). We suppose that this has a scaling form 

f ( z >  = W E , )  
with F ( 0 )  having a Taylor expansion about 0 = 0 and F(1) = 1. Whereas in mean-field 
theory the interfacial roughness EL can be set equal to the length a so that f(a) is 
irrelevant, we can expect the factorf(a) - acyl  to become relevant in strongly fluctuating 
t Even in d = 2, when EL - t and fluctuations are extremely strong, a divergent ET does not exist for complete 
wetting or drying. The sum rules (9) for a hard wall also apply in d = 2 and G&, 0) = p'(z)  must still be 
characteristic of the wa1I;gas interface for small z in the complete drying limit. Consequently there is no 
singular contribution to Go(O, 0). 
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regimes. For d < 3 unfreezing the capillary-wave fluctuations gave the result p'(a) - 
5;' so that (98) implies 

g;2 - Id El - (1+ps-2vl l )  d < 3  

and since LjL - t and Ps = (3 - d ) q / 2  in this regime, we recover (93) for V I I .  The cal- 
culation can be repeated in d = 3 for the various regimes of m. Equation (86) yields 
p'(a) - LjP-'lfor w < &and4 < w < 2. Inbothof these regimestdivergeslogarithmically 
and (98) implies 

so that we recover (87) for q; the factor of 5;' has no implication for the exponents if 
w < 2. When w > 2 and 511 diverges exponentially we assume, as previously, 

= C3gb[1n(g11/gb) - In ln(El1/gb)l 

with (73) for &$E). Using (98) to determine the coefficients c3 and q we find c3 = 
as before, but now q = (4p + 2)/8@ so that 

These results differ (by yet another troublesome factor of (In @'/s) from those of (89). 
This factor can be traced to the factor of arising from our scaling ansatz forf(a). We 
conclude that apart from this niggling discrepancy in the coefficient of the In In 511 term 
the simple ansatz for Gcw is remarkably successful in all dimensions and all fluctuation 
regimes for critical wetting with short-ranged forces. It would be worth while inves- 
tigating two-point correlation functions in two-dimensional models to see whether a 
formula equivalent to (96) can be derived from a rigorous treatment. 

In 00 4 and 5 and in this concluding section we have sought to rederive or test the 
consistency of the RG results for critical wetting in d = 3. We find that these satisfy the 
various sum-rule requirements and that they are consistent with the explicit procedure 
of unfreezing capillary-wave fluctuations on the mean-field profile. It is important 
to recognise that the latter procedure leads directly to w-dependent exponents and 
amplitudes, e.g. (87) and (88). The mean-field results are recovered if and only if U = 
0. The w enters our procedure via (85) ,  i.e. as the parameter that measures the amplitude 
of the interfacial roughness gL. Provided the detaching liquid-gas interface is rough, w 
must be non-zero, and we conclude in keeping with Henderson that, if critical wetting 
does occur in a continuum fluid near an adsorbing wall, this transition should exhibit w- 
dependent exponents. This conclusion is, of course, consistent with studies based on 
interfacial Hamiltonians. However, in those theories w-l enters from the outset as a 
measure of the increase in energy associated with an increase in area of the interface. 
Although our analysis is not immediately applicable to lattice models it does indicate 
that non-universal, w-dependent exponents should arise for any proper many-body 
Hamiltonian in d = 3, with short-ranged forces, and does suggest that further simu- 
lations, for both Ising-like and continuum models, would be valuable. To the best of our 
knowledge, no critical wetting transition has been found in simulations of continuum 
fluids. 
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